# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_gather(self): dtype = 'float32' x_data = torch.randn(2, 128, 768) y_data = torch.tensor([101, 127]).int() builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=y_data.shape, dtype=tensorrt_llm.str_dtype_to_trt('int32')) y = y.view( tensorrt_llm.functional.concat( [tensorrt_llm.functional.shape(y, 0), 1, 1])) y = tensorrt_llm.functional.expand( y, tensorrt_llm.functional.concat([ tensorrt_llm.functional.shape(y, 0), 1, tensorrt_llm.functional.shape(x, 2) ])) output = tensorrt_llm.functional.gather(x, dim=1, indices=y).view( tensorrt_llm.functional.concat([ tensorrt_llm.functional.shape(x, 0), tensorrt_llm.functional.shape(x, 2) ])) output = output.trt_tensor output.name = 'output' network.mark_output(output) build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'x': x_data.numpy(), 'y': y_data.numpy(), }) y_data = y_data.reshape(y_data.size(0), 1, 1) y_data = y_data.expand(y_data.size(0), 1, x_data.size(-1)) ref = torch.gather(x_data, dim=1, index=y_data.to(dtype=torch.int64)).view( x_data.size(0), x_data.size(2)) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5)