# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import math import unittest import torch from parameterized import parameterized from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @staticmethod def gelu(x, dtype): if dtype == 'float32': res = torch.nn.functional.gelu(x) else: res = 0.5 * x * (1 + torch.tanh( math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) return res def skip_bf16_before_ampere(self): sm = torch.cuda.get_device_capability() if sm < (8, 0): self.skipTest( f'Skip the test because sm{sm[0]}{sm[1]} does not support ' f'bfloat16.') @parameterized.expand( itertools.product( ('float32', 'float16', 'bfloat16'), (False, True), )) def test_gelu(self, dtype, strongly_typed): if dtype == 'bfloat16': self.skip_bf16_before_ampere() torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype) x_shape = (12, 12, 96, 96) x_data = torch.rand(x_shape, dtype=torch_dtype) # construct trt network builder = tensorrt_llm.Builder() builder.strongly_typed = strongly_typed net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.gelu(x).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data}) out = outputs['output'].to(torch_dtype) # Reference ref = self.gelu(x_data, dtype) if dtype == 'bfloat16': atol, rtol = 1e-5, 2e-2 else: atol, rtol = 1e-5, 2e-3 torch.testing.assert_close(out, ref, atol=atol, rtol=rtol) if __name__ == '__main__': unittest.main()