# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([('float32', ), ('float16', )]) def test_group_norm(self, dtype): # test data num_channels = 6 num_groups = 3 x_shape = (2, num_channels, 3, 3) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.group_norm(x, num_groups).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'))) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data.numpy()}) # pytorch run ref = torch.nn.functional.group_norm(x_data.cuda(), num_groups) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-2)