# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import numpy as np import pytest import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import getSMVersion class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([('float32', False), ('float32', True), ('float16', False), ('float16', True), ('bfloat16', False), ('bfloat16', True)]) def test_identity(self, dtype, use_plugin): # Skip tests that are not supported in pre-ampere architecture if getSMVersion() < 80: if dtype == 'bfloat16': pytest.skip( "bfloat16 is not supported in pre-ampere architecture") x_data = torch.randn( (4, 6, 3, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) builder = tensorrt_llm.Builder() net = builder.create_network() if use_plugin: net.plugin_config.set_identity_plugin(dtype) with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.identity(x).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'), bf16=(dtype == 'bfloat16'))) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data}) np.testing.assert_allclose(x_data.to(torch.float32), outputs['output'].to(torch.float32))