# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_interpolate_without_scales_nearest_5d(self): # test data dtype = 'float32' input_shape = (1, 1, 8, 12, 16) output_shape = (16, 24, 32) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'nearest' # construct trt network align_corners_flag = False builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, size=output_shape, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, size=output_shape, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_interpolate_without_scales_bilinear_4d_disable_align_corner(self): # test data dtype = 'float32' input_shape = (1, 1, 8, 12) output_shape = (16, 24) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'bilinear' # construct trt network align_corners_flag = False builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, size=output_shape, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, size=output_shape, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5) def test_interpolate_without_scales_bilinear_4d_enable_align_corner(self): # test data dtype = 'float32' input_shape = (1, 1, 8, 12) output_shape = (16, 24) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'bilinear' # construct trt network align_corners_flag = True builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, size=output_shape, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, size=output_shape, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5) def test_interpolate_without_scales_bicubic_4d_enable_align_corner(self): # test data dtype = 'float32' input_shape = (1, 4, 8, 12) output_shape = (16, 24) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'bicubic' # construct trt network align_corners_flag = True builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, size=output_shape, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, size=output_shape, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-3) def test_interpolate_with_scale_3d_nearest_exact(self): # test data dtype = 'float32' input_shape = (1, 4, 8, 16) scales_factor = (2, 4) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'nearest-exact' # construct trt network align_corners_flag = False builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, scale_factor=scales_factor, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, scale_factor=scales_factor, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_interpolate_with_scale_4d_bicubic(self): # test data dtype = 'float32' input_shape = (1, 4, 8, 12) scales_factor = (2.5, 2) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'bicubic' # construct trt network align_corners_flag = False builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, scale_factor=scales_factor, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, scale_factor=scales_factor, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5) def test_interpolate_with_scale_4d_bilinear(self): # test data dtype = 'float32' input_shape = (1, 1, 8, 32) scales_factor = (2.5, 4) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'bilinear' # construct trt network align_corners_flag = False builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, scale_factor=scales_factor, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, scale_factor=scales_factor, align_corners=align_corners_flag, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5) def test_interpolate_with_scale_5d_trilinear_enable_align_corner(self): # test data dtype = 'float32' input_shape = (1, 1, 8, 16, 32) scales_factor = (2.5, 2, 4) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mode = 'trilinear' # construct trt network align_corners_flag = True builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.interpolate( input=input, scale_factor=scales_factor, mode=mode, align_corners=align_corners_flag, ).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = torch.nn.functional.interpolate(input_data, scale_factor=scales_factor, align_corners=align_corners_flag, mode=mode) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5)