# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import numpy as np import pytest import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Parameter, Tensor from tensorrt_llm._utils import torch_to_numpy sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import getSMVersion class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') torch.manual_seed(42) @parameterized.expand([['float16'], ['float32'], ['bfloat16']]) def test_layer_norm_plugin(self, dtype): # Skip tests that are not supported in pre-ampere architecture if getSMVersion() < 80: if dtype == 'bfloat16': pytest.skip( "bfloat16 is not supported in pre-ampere architecture") # test data hidden_size = 1024 x_data = torch.randn((8, 128, hidden_size), dtype=torch.float64, device="cuda") weight = torch.randn((hidden_size), dtype=torch.float64, device="cuda") bias = torch.randn((hidden_size), dtype=torch.float64, device="cuda") eps = 1e-5 m = torch.nn.LayerNorm(hidden_size, eps=eps, dtype=torch.float64, device="cuda") m.weight = torch.nn.Parameter(weight) m.bias = torch.nn.Parameter(bias) # pytorch run with torch.no_grad(): ref = m(x_data) m.to(tensorrt_llm._utils.str_dtype_to_torch(dtype)) x_data = x_data.to(tensorrt_llm._utils.str_dtype_to_torch(dtype)) gamma_data = m.weight.detach().cpu() beta_data = m.bias.detach().cpu() # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() net.plugin_config.set_layernorm_plugin(dtype) with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) weight = Parameter(torch_to_numpy(gamma_data.cpu())).value bias = Parameter(torch_to_numpy(beta_data.cpu())).value output = tensorrt_llm.functional.layer_norm(x, hidden_size, weight, bias, eps).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) # trt run build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'), bf16=(dtype == 'bfloat16'))) assert build_engine is not None, "Build engine failed" with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data.cpu()}) # compare diff dtype_atol = {"float16": 2e-2, "float32": 2e-6, "bfloat16": 8e-2} np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'].to(torch.float32), atol=dtype_atol[dtype])