import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([[0], [1], [2]]) def test_repeat_interleave(self, axis): dtype = 'float32' repeats = 3 x_data = torch.randn( (2, 3, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.repeat_interleave( x, repeats, axis).trt_tensor output.name = 'output' network.mark_output(output) build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'x': x_data.numpy(), }) ref = torch.repeat_interleave(x_data, repeats, axis) np.testing.assert_allclose(ref, outputs['output'])