/* * Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/config.h" #include TRTLLM_NAMESPACE_BEGIN namespace kernels { // Perform fused QK Normalization and RoPE in a single CUDA kernel // This function efficiently applies RMS normalization and RoPE embeddings to query and key tensors void launchFusedQKNormRope( void* qkv, // Combined QKV tensor [num_tokens, (num_heads_q+num_heads_k+num_heads_v)*head_dim] int const num_tokens, // Number of tokens int const num_heads_q, // Number of query heads int const num_heads_k, // Number of key heads int const num_heads_v, // Number of value heads int const head_dim, // Dimension per head int const rotary_dim, // Dimension for RoPE float const eps, // Epsilon for RMS normalization void const* q_weight, // RMSNorm weights for query [head_dim] void const* k_weight, // RMSNorm weights for key [head_dim] float const base, // Base for RoPE computation bool const interleave, // Whether RoPE is applied in interleave mode (non-Neox style) int const* position_ids, // Position IDs for RoPE [num_tokens] float factor, // factor in rope_scaling in config.json. When it is not 1.0, it means the model is using yarn. float low, // threshold for high frequency float high, // threshold for low frequency float attention_factor, // attention_factor applied on cos and sin cudaStream_t stream, // CUDA stream bool is_qk_norm); } // namespace kernels TRTLLM_NAMESPACE_END