/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/common/tensor.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/layers/baseSamplingLayer.h" namespace tensorrt_llm { namespace layers { template class TopKSamplingLayer : public BaseSamplingLayer { public: static constexpr uint32_t TOP_K_MAX = 1024; using Base = BaseSamplingLayer; using SetupParams = typename Base::SetupParams; TopKSamplingLayer(size_t vocab_size, size_t vocab_size_padded, cudaStream_t stream, std::shared_ptr allocator, bool is_free_buffer_after_forward); TopKSamplingLayer(TopKSamplingLayer const& top_k_sampling_layer); ~TopKSamplingLayer(); void setup(size_t batch_size, SetupParams const& setupParams) override; protected: void runSampling(DecodingOutputParams& outputs, DecodingParams const& params) override; void freeBuffer() override; bool normalize_log_probs = true; uint32_t runtime_max_top_k_ = 1; uint32_t* runtime_top_k_buf_ = nullptr; float* runtime_top_p_buf_ = nullptr; using Base::vocab_size_; using Base::vocab_size_padded_; using Base::sampling_workspace_size_; using Base::sampling_workspace_; using Base::curandstate_buf_; using Base::random_seeds_buf_; using Base::skip_decode_buf_; using Base::skip_decode_; using Base::skip_any_; using Base::runtime_logits_buf_; using Base::stream_; using Base::allocator_; using Base::is_allocate_buffer_; private: void allocateBuffer(size_t batch_size, std::vector const& top_k); }; } // namespace layers } // namespace tensorrt_llm