/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/gptJsonConfig.h" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/stringUtils.h" #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; namespace { using Json = typename nlohmann::json::basic_json; template FieldType parseJsonFieldOr(Json const& json, std::string_view name, FieldType defaultValue) { auto value = defaultValue; try { value = json.at(name).template get(); } catch (nlohmann::json::out_of_range&) { // std::cerr << e.what() << '\n'; } return value; } template std::optional parseJsonFieldOptional(Json const& json, std::string_view name) { std::optional value = std::nullopt; try { value = json.at(name).template get(); } catch (const nlohmann::json::out_of_range& e) { TLLM_LOG_WARNING(e.what()); TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str()); } catch (const nlohmann::json::type_error& e) { TLLM_LOG_WARNING(e.what()); TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str()); } return value; } template GptJsonConfig parseJson(InputType&& i) { auto constexpr allowExceptions = true; auto constexpr ingoreComments = true; auto json = nlohmann::json::parse(i, nullptr, allowExceptions, ingoreComments); auto const& builderConfig = json.at("builder_config"); auto const name = builderConfig.at("name").template get(); auto const precision = builderConfig.at("precision").template get(); auto const tensorParallelism = builderConfig.at("tensor_parallel").template get(); auto const pipelineParallelism = parseJsonFieldOr(builderConfig, "pipeline_parallel", 1); auto const numHeads = builderConfig.at("num_heads").template get() / tensorParallelism; auto const hiddenSize = builderConfig.at("hidden_size").template get() / tensorParallelism; auto const vocabSize = builderConfig.at("vocab_size").template get(); auto const numLayers = builderConfig.at("num_layers").template get(); auto dataType = nvinfer1::DataType::kFLOAT; if (!precision.compare("float32")) dataType = nvinfer1::DataType::kFLOAT; else if (!precision.compare("float16")) dataType = nvinfer1::DataType::kHALF; else if (!precision.compare("bfloat16")) dataType = nvinfer1::DataType::kBF16; else TLLM_CHECK_WITH_INFO(false, tc::fmtstr("Model data type '%s' not supported", precision.c_str())); auto const quantMode = tc::QuantMode(parseJsonFieldOr(builderConfig, "quant_mode", tc::QuantMode::none().value())); // TODO: // Code crashes when numKvHeads <= 0. Clamping downwards to 1 prevents that, make sure this is best fix. auto const numKvHeads = std::max( parseJsonFieldOr(builderConfig, "num_kv_heads", numHeads * tensorParallelism) / tensorParallelism, 1); auto const maxBatchSize = parseJsonFieldOr(builderConfig, "max_batch_size", 0); auto const maxInputLen = parseJsonFieldOr(builderConfig, "max_input_len", 0); auto const maxOutputLen = parseJsonFieldOr(builderConfig, "max_output_len", 0); auto const maxNumTokens = parseJsonFieldOptional(builderConfig, "max_num_tokens"); auto const computeContextLogits = parseJsonFieldOr(builderConfig, "gather_all_token_logits", false); auto const& pluginConfig = json.at("plugin_config"); auto const pagedKvCache = pluginConfig.at("paged_kv_cache"); auto const tokensPerBlock = pluginConfig.at("tokens_per_block"); auto const& gptAttentionPlugin = pluginConfig.at("gpt_attention_plugin"); auto const useGptAttentionPlugin = !gptAttentionPlugin.is_boolean() || gptAttentionPlugin.template get(); auto const removeInputPadding = pluginConfig.at("remove_input_padding").template get(); auto const useCustomAllReduce = pluginConfig.at("use_custom_all_reduce").template get(); auto modelConfig = GptModelConfig{vocabSize, numLayers, numHeads, hiddenSize, dataType}; modelConfig.useGptAttentionPlugin(useGptAttentionPlugin); modelConfig.usePackedInput(removeInputPadding); modelConfig.usePagedKvCache(pagedKvCache); modelConfig.useCustomAllReduce(useCustomAllReduce); modelConfig.setTokensPerBlock(tokensPerBlock); modelConfig.setQuantMode(quantMode); modelConfig.setNbKvHeads(numKvHeads); modelConfig.computeContextLogits(computeContextLogits); modelConfig.setMaxBatchSize(maxBatchSize); modelConfig.setMaxInputLen(maxInputLen); modelConfig.setMaxOutputLen(maxOutputLen); modelConfig.setMaxNumTokens(maxNumTokens); if (name == std::string("chatglm-6b")) { modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm); // kGlm is only for ChatGLM-6B, not for ChatGLM2-6B } return GptJsonConfig{name, precision, tensorParallelism, pipelineParallelism, modelConfig}; } } // namespace std::string GptJsonConfig::engineFilename(WorldConfig const& worldConfig, std::string const& model) const { TLLM_CHECK_WITH_INFO(getTensorParallelism() == worldConfig.getTensorParallelism(), "tensor parallelism mismatch"); TLLM_CHECK_WITH_INFO( getPipelineParallelism() == worldConfig.getPipelineParallelism(), "pipeline parallelism mismatch"); auto pp = worldConfig.isPipelineParallel() ? "_pp" + std::to_string(worldConfig.getPipelineParallelism()) : ""; return model + "_" + getPrecision() + "_tp" + std::to_string(worldConfig.getTensorParallelism()) + pp + "_rank" + std::to_string(worldConfig.getRank()) + ".engine"; } GptJsonConfig GptJsonConfig::parse(std::string const& json) { return parseJson(json); } GptJsonConfig GptJsonConfig::parse(std::istream& json) { return parseJson(json); } GptJsonConfig GptJsonConfig::parse(std::filesystem::path const& path) { TLLM_CHECK_WITH_INFO(std::filesystem::exists(path), std::string("File does not exist: ") + path.string()); std::ifstream json(path); return parse(json); }