#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg from pathlib import Path import run def generate_output(engine: str, num_beams: int, output_name: str, tp_size: int = 1, pp_size: int = 1, max_output_len: int = 8): model = 'llama-7b-hf' resources_dir = Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' hf_dir = models_dir / model tp_pp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-gpu/' engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_dir data_dir = resources_dir / 'data' input_file = data_dir / 'input_tokens.npy' model_data_dir = data_dir / model if num_beams <= 1: output_dir = model_data_dir / 'sampling' else: output_dir = model_data_dir / ('beam_search_' + str(num_beams)) output_name += '_tp' + str(tp_size) + '_pp' + str(pp_size) run.generate(engine_dir=str(engine_dir), tokenizer_dir=str(hf_dir), input_file=str(input_file), output_npy=str(output_dir / (output_name + '.npy')), output_csv=str(output_dir / (output_name + '.csv')), max_output_len=max_output_len, num_beams=num_beams) def generate_outputs(num_beams, only_multi_gpu=False): tp_pp_sizes = [(1, 1)] if not only_multi_gpu else [(4, 1), (2, 2), (1, 4)] for tp_size, pp_size in tp_pp_sizes: print( f'Generating outputs for Llama FP16 with TP={tp_size} and PP={pp_size}' ) generate_output(engine='fp16-plugin-packed-paged', num_beams=num_beams, tp_size=tp_size, pp_size=pp_size, output_name='output_tokens_fp16_plugin_packed_paged') if __name__ == '__main__': parser = _arg.ArgumentParser() parser.add_argument( "--only_multi_gpu", action="store_true", help="Generate data with Pipeline and Tensor Parallelism") args = parser.parse_args() generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu) generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu) print("Done")