#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import os as _os import pathlib as _pl import subprocess as _sp import sys import typing as _tp from glob import glob as _glob import torch.multiprocessing as _mp resources_dir = _pl.Path( __file__).parent.parent.parent.parent.parent / "examples/chatglm6b" sys.path.insert(0, str(resources_dir)) engine_target_path = _pl.Path( __file__).parent.parent / "models/rt_engine/chatglm6b" import build as _ecb def build_engine(weigth_dir: _pl.Path, engine_dir: _pl.Path, *args): print("Additional parameters: " + " ".join(args[0])) arg = _ecb.parse_arguments() arg.model_dir = str(weigth_dir) arg.output_dir = str(engine_dir) arg.max_batch_size = 2 arg.max_beam_width = 2 for item in args[0]: key, value = item.split(" ") if key[2:] in dir(arg): arg.__setattr__(key, value) else: print("Error parameter name:", key) return _ecb.build(0, arg) def run_command(command: _tp.Sequence[str], *, cwd=None, **kwargs) -> None: command = [str(i) for i in command] print(f"Running: cd %s && %s" % (str(cwd or _pl.Path.cwd()), " ".join(command))) _sp.check_call(command, cwd=cwd, **kwargs) def build_engines(model_cache: _tp.Optional[str] = None, world_size: int = 1): # Clone the model directory hf_dir = resources_dir / "pyTorchModel" ft_dir = resources_dir / "ftModel" trt_dir = resources_dir / "trtModel" run_command( ["pip", "install", "-r", str(resources_dir) + "/requirements.txt"], cwd=resources_dir) if not _os.path.exists(hf_dir): _os.mkdir(hf_dir) if len(_glob(str(hf_dir) + "/*")) == 0: run_command( ["git", "clone", "https://huggingface.co/THUDM/chatglm-6b", hf_dir], cwd=resources_dir) if not _os.path.exists(resources_dir / "lm.npy"): print("Exporting weight of LM") run_command([ "cp", str(hf_dir) + "/modeling_chatglm.py", str(hf_dir) + "/modeling_chatglm.py-backup" ], cwd=resources_dir) run_command([ "cp", str(resources_dir) + "/modeling_chatglm.py", str(hf_dir) + "/modeling_chatglm.py" ], cwd=resources_dir) run_command(["python3", str(resources_dir) + "/exportLM.py"], cwd=resources_dir) assert (_os.path.exists(resources_dir / "lm.npy")) run_command([ "mv", str(hf_dir) + "/modeling_chatglm.py-backup", str(hf_dir) + "/modeling_chatglm.py" ], cwd=resources_dir) if len(_glob(str(ft_dir) + "/*")) == 0: print("\nConverting weight") run_command([ "python3", str(resources_dir) + "/hf_chatglm6b_convert.py", "-i", hf_dir, "-o", ft_dir, "--storage-type", "fp16" ], cwd=resources_dir) if len(_glob(str(trt_dir) + "/*")) == 0: print("\nBuilding engine") arg_list = [ "--dtype float16", "--use_gpt_attention_plugin float16", "--use_gemm_plugin float16", ] build_engine(ft_dir / "1-gpu", trt_dir, arg_list) if not _os.path.exists(str(engine_target_path)): _os.system(f"mkdir -p {str(engine_target_path)}") _os.system(f"cp -r {str(trt_dir) + '/*'} {engine_target_path}") print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, default="examples/chatglm6b/pyTorchModel", help="Directory where models are stored") parser.add_argument('--world_size', type=int, default=1, help='world size, only support tensor parallelism now') _mp.set_start_method("spawn") build_engines(**vars(parser.parse_args()))