# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import torch from transformers import BloomTokenizerFast import tensorrt_llm from tensorrt_llm.runtime import ModelConfig, SamplingConfig from build import get_engine_name # isort:skip EOS_TOKEN = 2 PAD_TOKEN = 3 def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--max_output_len', type=int, required=True) parser.add_argument('--log_level', type=str, default='error') parser.add_argument('--engine_dir', type=str, default='bloom_outputs') parser.add_argument('--tokenizer_dir', type=str, default=".", help="Directory containing the tokenizer.model.") parser.add_argument('--input_text', type=str, default='Born in north-east France, Soyer trained as a') return parser.parse_args() if __name__ == '__main__': args = parse_arguments() tensorrt_llm.logger.set_level(args.log_level) config_path = os.path.join(args.engine_dir, 'config.json') with open(config_path, 'r') as f: config = json.load(f) use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin'] dtype = config['builder_config']['precision'] world_size = config['builder_config']['tensor_parallel'] assert world_size == tensorrt_llm.mpi_world_size(), \ f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})' num_heads = config['builder_config']['num_heads'] // world_size hidden_size = config['builder_config']['hidden_size'] // world_size vocab_size = config['builder_config']['vocab_size'] num_layers = config['builder_config']['num_layers'] runtime_rank = tensorrt_llm.mpi_rank() runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank, tp_size=world_size) torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node) engine_name = get_engine_name('bloom', dtype, world_size, runtime_rank) serialize_path = os.path.join(args.engine_dir, engine_name) tokenizer = BloomTokenizerFast.from_pretrained(args.tokenizer_dir) input_ids = torch.tensor(tokenizer.encode(args.input_text), dtype=torch.int32).cuda().unsqueeze(0) model_config = ModelConfig(num_heads=num_heads, num_kv_heads=num_heads, hidden_size=hidden_size, vocab_size=vocab_size, num_layers=num_layers, gpt_attention_plugin=use_gpt_attention_plugin, dtype=dtype) sampling_config = SamplingConfig(end_id=EOS_TOKEN, pad_id=PAD_TOKEN) input_lengths = torch.tensor( [input_ids.size(1) for _ in range(input_ids.size(0))]).int().cuda() with open(serialize_path, 'rb') as f: engine_buffer = f.read() decoder = tensorrt_llm.runtime.GenerationSession(model_config, engine_buffer, runtime_mapping) decoder.setup(input_ids.size(0), max_context_length=input_ids.size(1), max_new_tokens=args.max_output_len) output_ids = decoder.decode(input_ids, input_lengths, sampling_config) torch.cuda.synchronize() output_ids = output_ids.tolist()[0][0][input_ids.size(1):] output_text = tokenizer.decode(output_ids) print(f'Input: {args.input_text}') print(f'Output Ids: {output_ids}') print(f'Output: {output_text}')