#! /usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import datetime import logging import multiprocessing import shutil import sys import tempfile import typing from collections import defaultdict from pathlib import Path import numpy as np import torch from tqdm import tqdm from transformers import GPT2Tokenizer, T5Tokenizer from utils.convert import (cpu_map_location, gpu_map_location, split_and_save_weight) from utils.nemo import (UnpackedNemoCheckpointDir, extract_layers_with_prefix, nemo_to_gpt_config, unpack_nemo_ckpt) from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy LOGGER = logging.getLogger(__name__) def rename_key(old_key: str, pp_rank: int, num_layers: int, pp_size: int): new_key = old_key if "layers." in old_key: split_key = old_key.split(".") split_key[1] = str(int(split_key[1]) + pp_rank * num_layers // pp_size) new_key = ".".join(split_key) if "self_attention" in new_key: new_key = new_key.replace("self_attention", "attention") return new_key @torch.no_grad() def convert_checkpoint(unpacked_checkpoints_dir: UnpackedNemoCheckpointDir, args): nemo_model_config = unpacked_checkpoints_dir.model_config checkpoints_paths = unpacked_checkpoints_dir.get_checkpoints_paths( nemo_model_config.get("tensor_model_parallel_size", 1), nemo_model_config.get("pipeline_model_parallel_size", 1), ) # if checkpoints files could be found - start preparing output dir out_dir = create_out_dir(args) map_location_fn = gpu_map_location if args.load_checkpoints_on_gpu else cpu_map_location storage_type = str_dtype_to_torch(args.storage_type) # load position_embedding from rank 0 model_00 = torch.load(checkpoints_paths[0][0], map_location=map_location_fn) model_00 = model_00.get("state_dict", model_00) has_position_embedding = "model.language_model.embedding.position_embeddings.weight" in model_00 has_lm_head = "model.language_model.output_layer.weight" in model_00 num_layers = nemo_model_config["num_layers"] training_tp_size = nemo_model_config.get("tensor_model_parallel_size", 1) training_pp_size = nemo_model_config.get("pipeline_model_parallel_size", 1) inference_tp_size = args.tensor_parallelism export_config = { "apply_layernorm_1p": nemo_model_config.get('normalization', '') == "layernorm1p", "tp_size": training_tp_size, "split_gated_activation": "swiglu" in nemo_model_config.get('activation', "gelu"), "num_attention_heads": nemo_model_config["num_attention_heads"], "use_attention_nemo_shape": True, "transpose_weights": True, } # merge_factor: how many TP training nodes are merged into an inference TP node # split_factor: in how many parts a TP training node is split gcd = np.gcd(training_tp_size, inference_tp_size) merge_factor = training_tp_size // gcd split_factor = inference_tp_size // gcd model_level_weights = defaultdict(list) def handle_model_level_weights(model, tp_idx: int, pp_idx: int): if tp_idx == 0 and pp_idx == 0: if has_position_embedding: val = model[ "model.language_model.embedding.position_embeddings.weight"] # not weight, do not need to transpose val = torch_to_numpy(val.to(storage_type).cpu()) val.tofile(out_dir / "model.wpe.bin") model_level_weights["model.wpe.bin"].append(val) if pp_idx == 0: val = model.get( "state_dict", model)["model.language_model.embedding.word_embeddings.weight"] val = torch_to_numpy(val.to(storage_type).cpu()) model_level_weights["model.wte.bin"].append(val) if has_lm_head and pp_idx == training_pp_size - 1: val = model.get("state_dict", model)["model.language_model.output_layer.weight"] val = torch_to_numpy(val.to(storage_type).cpu()) model_level_weights["model.lm_head.weight.bin"].append(val) for tp_rank in range(training_tp_size // merge_factor): for pp_rank in range(training_pp_size): models = [] for k in range(merge_factor): rank_weights = checkpoints_paths[tp_rank * merge_factor + k][pp_rank] model = torch.load(rank_weights, map_location=map_location_fn) handle_model_level_weights(model, tp_rank * merge_factor + k, pp_rank) layers = extract_layers_with_prefix( model, "model.language_model.encoder.") models.append(layers) starmap_args = [] for key in models[0].keys(): starmap_args.append(( tp_rank, out_dir, split_factor, rename_key(key, pp_rank, num_layers, training_pp_size), [model[key] for model in models], storage_type, None, export_config, )) starmap_args = tqdm(starmap_args, desc="saving weights") if args.processes > 1: with multiprocessing.Pool(args.processes) as pool: pool.starmap(split_and_save_weight, starmap_args) else: # simpler for debug situations for starmap_arg in starmap_args: split_and_save_weight(*starmap_arg) for key, values in model_level_weights.items(): model_level_weights[key] = np.concatenate(values, axis=0) model_level_weights[key].tofile(out_dir / key) vocab_size = model_level_weights["model.wte.bin"].shape[0] tokenizer_config = update_tokenizer_paths(nemo_model_config["tokenizer"], unpacked_checkpoints_dir) copy_tokenizer_files(tokenizer_config, out_dir) tokenizer = build_tokenizer(tokenizer_config) gpt_model_config = nemo_to_gpt_config(nemo_model_config, vocab_size, tokenizer.eos_token_id, tokenizer.bos_token_id) config = configparser.ConfigParser() config["gpt"] = {k: str(v) for k, v in vars(gpt_model_config).items()} config["gpt"]["storage_dtype"] = args.storage_type config_path = out_dir / "config.ini" with config_path.open("w") as config_file: config.write(config_file) def create_out_dir(args): out_dir = Path(args.out_dir) / f"{args.tensor_parallelism}-gpu/" if not out_dir.exists(): out_dir.mkdir(parents=True) return out_dir def update_tokenizer_paths(tokenizer_config: typing.Dict, unpacked_checkpoints_dir): def _update_config_entry(key, file_pattern): old_path = tokenizer_config[key] if old_path is None: return old_path = Path(old_path) new_path = unpacked_checkpoints_dir.get_tokenizer_file_path( "tokenizer", key, file_pattern) if new_path: LOGGER.debug(f"Update tokenizer {key} {old_path} -> {new_path}") tokenizer_config[key] = new_path.as_posix() elif not old_path.exists(): LOGGER.warning( f"Tokenizer {key}'s path {old_path} does not exists: set it to None" ) tokenizer_config[key] = None _update_config_entry("model", "*.model") _update_config_entry("vocab_file", "*vocab*") _update_config_entry("merge_file", "*merge*.txt") return tokenizer_config def copy_tokenizer_files(config, out_dir): basenames = { "model": "tokenizer", "vocab_file": "vocab", "merge_file": "merges", } for key in basenames.keys(): if config[key] is None: continue path = Path(config[key]) if not path.exists(): LOGGER.debug(f"Tokenizer {key}: {path} file not found") continue dst_path = out_dir / f"{basenames[key]}{path.suffix}" LOGGER.debug(f"Copy tokenizer {key}: {path}->{dst_path}") shutil.copy(path.as_posix(), dst_path.as_posix()) def build_tokenizer(tokenizer_config: typing.Dict): if tokenizer_config["library"] == "sentencepiece": tokenizer = T5Tokenizer(tokenizer_config["model"], extra_ids=0) elif "GPT2" in tokenizer_config["type"]: tokenizer = GPT2Tokenizer(tokenizer_config["vocab_file"], tokenizer_config["merge_file"]) else: raise ValueError( f'Tokenizer type {tokenizer_config["library"]} not handled') if tokenizer.bos_token_id is None: tokenizer.add_special_tokens({"bos_token": ""}) if tokenizer.eos_token_id is None: tokenizer.add_special_tokens({"eos_token": ""}) return tokenizer def main(): torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--out-dir', '-o', type=Path, help='path to output directory', required=True) parser.add_argument('--in-file', '-i', type=Path, help='path to input checkpoint file', required=True) parser.add_argument('--tensor-parallelism', '-tp', type=int, help='Requested tensor parallelism for inference', default=1) parser.add_argument( "--processes", "-p", type=int, help= "How many processes to spawn for conversion (default: 4). Set it to a lower value to reduce RAM usage.", default=4) parser.add_argument("--storage-type", "-t", type=str, default="float32", choices=["float32", "float16", "bfloat16"]) parser.add_argument("--load-checkpoints-on-gpu", action="store_true", help="Whether to load model weights to GPU") parser.add_argument("--verbose", action="store_true", help="Provide verbose messages") args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") if not args.in_file.exists(): LOGGER.error("%s does not exists", args.in_file) sys.exit(1) with tempfile.TemporaryDirectory() as temp_dir: temp_dir = Path(temp_dir) # unpack if needed if args.in_file.is_dir(): nemo_dir = args.in_file else: start_time = datetime.datetime.now() checkpoint_dir_path = temp_dir / "unpacked" nemo_dir = unpack_nemo_ckpt(args.in_file, checkpoint_dir_path) LOGGER.info("Spent %s (h:m:s) to unpack NeMo archive", datetime.datetime.now() - start_time) unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( nemo_dir, load_checkpoints_to_cpu=not args.load_checkpoints_on_gpu) start_time = datetime.datetime.now() convert_checkpoint(unpacked_checkpoint_dir, args) LOGGER.info("Spent %s (h:m:s) to convert the model", datetime.datetime.now() - start_time) if __name__ == "__main__": main()