# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..functional import ACT2FN from ..module import Module from ..quantization import QuantMode from ..quantization.layers import FP8Linear, FP8RowLinear from .linear import ColumnLinear, RowLinear class MLP(Module): def __init__(self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), instance_id: int = 0): super().__init__() if hidden_act not in ACT2FN: raise ValueError( 'unsupported activation function: {}'.format(hidden_act)) fc_output_size = 2 * ffn_hidden_size if hidden_act == 'swiglu' else ffn_hidden_size self.use_fp8_qdq = quant_mode.has_fp8_qdq() if self.use_fp8_qdq: self.fc = FP8Linear(hidden_size, fc_output_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.proj = FP8RowLinear(ffn_hidden_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, instance_id=instance_id) else: self.fc = ColumnLinear(hidden_size, fc_output_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.proj = RowLinear(ffn_hidden_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, instance_id=instance_id) self.hidden_act = hidden_act self.dtype = dtype def forward(self, hidden_states, workspace=None): inter = self.fc(hidden_states) inter = ACT2FN[self.hidden_act](inter) output = self.proj(inter, workspace) return output class GatedMLP(MLP): def __init__(self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), instance_id: int = 0): self.use_fp8_qdq = quant_mode.has_fp8_qdq() super().__init__(hidden_size, ffn_hidden_size, hidden_act, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=quant_mode, instance_id=instance_id) if self.use_fp8_qdq: self.gate = FP8Linear(hidden_size, ffn_hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) else: self.gate = ColumnLinear(hidden_size, ffn_hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) def forward(self, hidden_states, workspace=None): inter = self.fc(hidden_states) inter = ACT2FN[self.hidden_act](inter) gate = self.gate(hidden_states) output = self.proj(inter * gate, workspace) return output