# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import List import torch class Block(object): def __init__(self, block_idx, k_ptrs, v_ptrs): self.idx = block_idx self.k_ptrs = k_ptrs self.v_ptrs = v_ptrs self.ref_count = 0 def add_link(self): self.ref_count += 1 def remove_link(self): self.ref_count -= 1 def has_link(self) -> bool: return self.ref_count > 0 def get_k_ptr(self, idx) -> int: return self.k_ptrs[idx] def get_v_ptr(self, idx) -> int: return self.v_ptrs[idx] class GenerationSequence(object): def __init__(self, seq_idx, batch_idx): self.seq_idx = seq_idx self.batch_idx = batch_idx def get_batch_idx(self) -> int: """ Returns idx of sequence in batch """ return self.batch_idx def get_seq_idx(self) -> int: """ Returns sequence idx """ return self.seq_idx def __eq__(self, another): return hasattr(another, 'seq_idx') and self.seq_idx == another.seq_idx and \ hasattr(another, 'batch_idx') and self.batch_idx == another.batch_idx def __hash__(self): return self.seq_idx class BlocksManager(object): _sizeof = { torch.float32: 4, torch.float16: 2, torch.bfloat16: 2, torch.int8: 1 } def __init__(self, memory_pools: List[torch.Tensor], blocks: int, max_blocks_per_seq: int = 128, beam_width: int = 1): self.max_blocks_per_seq = max_blocks_per_seq self.pointer_array = None self.memory_pools = memory_pools self.blocks = blocks self.beam_width = beam_width self.elts_per_blocks = [] for pool in memory_pools: # Pool consists of memory for K and V caches self.elts_per_blocks.append(pool.nelement() // (2 * blocks)) self.free_blocks = [] for bi in range(blocks): k_ptrs = [] v_ptrs = [] for pool, elts_per_block in zip(memory_pools, self.elts_per_blocks): k_ptrs.append(self.get_mempool_pointer(bi, pool, elts_per_block)) v_ptrs.append( self.get_mempool_pointer(bi, pool, elts_per_block) + self.blocks * elts_per_block * self._sizeof[pool.dtype]) self.free_blocks.append(Block(bi, k_ptrs, v_ptrs)) self.allocated_blocks = defaultdict( lambda: [[] for _ in range(self.beam_width)]) def has_free_block(self) -> bool: """ Returns True if we have at least 1 free block """ return len(self.free_blocks) > 0 def allocate(self, owner: GenerationSequence, share_across_beam: bool = False): """ Add block to owner and increase ref count """ # Add blocks for whole beam width block = None for bi in range(self.beam_width): if not self.has_free_block(): raise RuntimeError("Can't allocate new block for KV cache") # Use the same block for all seqs in beam if share_across_beam if block is None or share_across_beam == False: block = self.free_blocks.pop(0) # Add one reference to the block block.add_link() self.allocated_blocks[owner][bi].append(block) def free(self, owner: GenerationSequence): """ Unlink all blocks of given owner. Moves blocks with ref_count == 0 to free. Removes owner from allocated blocks. """ for bi in range(self.beam_width): for block in self.allocated_blocks[owner][bi]: # Move block to free if no one refers to it block.remove_link() # Move block to free if no one refers to it if not block.has_link(): self.free_blocks.append(block) # Remove owner from allocated blocks self.allocated_blocks.pop(owner) def get_number_blocks(self, owner: GenerationSequence) -> int: """ Returns number of blocks allocated to the sequence owner """ return len(self.allocated_blocks[owner][0]) def get_mempool_pointer(self, block_idx: int, pool: torch.Tensor, elts_per_block: int) -> int: """ Computes linear pointer """ return pool.data_ptr( ) + block_idx * elts_per_block * self._sizeof[pool.dtype] def get_pointer_array(self, pool_idx: int, beam_width: int) -> torch.Tensor: """ Returns array of [batch size, beam_width, 2, max_blocks_per_seq] of poitners to the allocated blocks in memory pool """ assert (beam_width <= self.beam_width) def create_nested_list(dims): """Recursive function to generate nested list.""" if len(dims) == 1: return [0 for _ in range(dims[0])] return [create_nested_list(dims[1:]) for _ in range(dims[0])] pointer_array = create_nested_list( (len(self.allocated_blocks), beam_width, 2, self.max_blocks_per_seq)) for owner, beams_blocks in self.allocated_blocks.items(): for bi in range(beam_width): for block_linear_idx, block in enumerate(beams_blocks[bi]): # K cache pointers pointer_array[owner.get_batch_idx( )][bi][0][block_linear_idx] = block.get_k_ptr(pool_idx) # V cache pointers pointer_array[owner.get_batch_idx( )][bi][1][block_linear_idx] = block.get_v_ptr(pool_idx) self.pointer_array = torch.tensor(pointer_array, dtype=torch.int64) return self.pointer_array def get_continous_caches(self, pool_idx: int) -> torch.Tensor: """ Returns countinous KV caches. Used only for debug purposes. """ assert self.beam_width == 1 elts_per_block = self.elts_per_blocks[pool_idx] pool = self.memory_pools[pool_idx].flatten() continous_kv_cache = torch.zeros(len(self.allocated_blocks), 2, self.max_blocks_per_seq * elts_per_block, dtype=pool.dtype, device="cuda") for owner, beam_blocks in self.allocated_blocks.items(): for bi in range(self.beam_width): for block_linear_idx, block in enumerate(beam_blocks[bi]): # The batch index. batch_idx = owner.get_batch_idx() # The first index in the sequence. block_offset = block_linear_idx * elts_per_block # The first index in the pool for K. k_start = block.idx * elts_per_block # The first index in the pool for V. v_start = k_start + self.blocks * elts_per_block continous_kv_cache[batch_idx][0][ block_offset:block_offset + elts_per_block] = pool[k_start:k_start + elts_per_block] continous_kv_cache[batch_idx][1][ block_offset:block_offset + elts_per_block] = pool[v_start:v_start + elts_per_block] return continous_kv_cache class KVCacheManager(object): def __init__(self, memory_pools: List[torch.Tensor], blocks: int, tokens_per_block: int, max_blocks_per_seq: int, beam_width: int = 1): self.blocks_manager = BlocksManager( memory_pools=memory_pools, blocks=blocks, max_blocks_per_seq=max_blocks_per_seq, beam_width=beam_width) self.num_pools = len(memory_pools) self.tokens_per_block = tokens_per_block self.beam_width = beam_width self.lens = [] self.sequences = [] def step(self, finished: List[bool]): """ Iterate to the next generation step. Add new blocks where needed and clear finished sequences. """ for seq in self.sequences: batch_idx = seq.get_batch_idx() if not finished[batch_idx] and self.lens[ batch_idx] % self.tokens_per_block == self.tokens_per_block - 1: self.blocks_manager.allocate(seq) self.lens[batch_idx] += 1 # Remove finished sequences for fi in range(len(finished)): if finished[fi]: self.blocks_manager.free(self.sequences[fi]) self.lens = [l for l, f in zip(self.lens, finished) if not f] # Remap sequence ids new_sequences = [] batch_idx = 0 for seq, finish in zip(self.sequences, finished): if not finish: seq.batch_idx = batch_idx new_sequences.append(seq) batch_idx += 1 self.sequences = new_sequences def add_sequence(self, sequence: GenerationSequence, context_len: int): """ Add sequence to the manager and allocate minimum amount of blocks for context """ self.lens.append(context_len) self.sequences.append(sequence) # With beam_width > 1 we share context blocks between beams. # First get number of blocks that can be shared across different beams. # This is only possible for complete blocks -> round down. context_blocks = context_len // self.tokens_per_block for _ in range(context_blocks): # Share context stage blocks within beam self.blocks_manager.allocate(sequence, share_across_beam=True) # Get one extra block for each beam. This is always one extra block # because we need space for context_len + 1 tokens. self.blocks_manager.allocate(sequence, share_across_beam=False) def get_pointer_arrays(self, beam_width: int) -> List[torch.Tensor]: """ Returns arrays of pointers for all memory pools copied to GPU """ pointer_arrays = [] for pool in range(self.num_pools): pointer_arrays.append( self.blocks_manager.get_pointer_array( pool, beam_width).to('cuda').view(dtype=torch.int64)) return pointer_arrays