# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from ..._utils import pad_vocab_size, torch_dtype_to_str from ...functional import Tensor, non_gated_version, recv, send from ...layers import (MOE, AttentionMaskType, ColumnLinear, DeepseekV2Attention, Embedding, GatedMLP, MoeConfig, PositionEmbeddingType, RmsNorm, SharedMoE) from ...mapping import Mapping from ...module import Module from ...plugin import init_all_reduce_helper from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig) from .convert import convert_deepseekv2, create_trt_config_from_hf class DeepseekV2DecoderLayer(Module): def __init__(self, config: PretrainedConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.config = config ### Input layernorm in Deepseek v2 is same as Llama self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) layers_range = config.mapping.pp_layers(config.num_hidden_layers) local_layer_idx = layer_idx - layers_range[0] self.attention = DeepseekV2Attention( local_layer_idx=local_layer_idx, hidden_size=config.hidden_size, num_attention_heads=config.num_attention_heads, q_lora_rank=config.q_lora_rank, kv_lora_rank=config.kv_lora_rank, qk_nope_head_dim=config.qk_nope_head_dim, qk_rope_head_dim=config.qk_rope_head_dim, v_head_dim=config.v_head_dim, max_position_embeddings=config.max_position_embeddings, eps=config.norm_epsilon, attention_mask_type=AttentionMaskType.causal, dtype=config.dtype, position_embedding_type=PositionEmbeddingType.learned_absolute, rotary_embedding_base=config.rotary_base, rotary_embedding_scaling=None, rotary_embedding_beta_fast=config.rotary_scaling['beta_fast'], rotary_embedding_beta_slow=config.rotary_scaling['beta_slow'], rotary_embedding_mscale=config.rotary_scaling['mscale'], rotary_embedding_mscale_all_dim=config. rotary_scaling['mscale_all_dim'], rotary_embedding_origin_max_position=config. rotary_scaling['original_max_position_embeddings'], rotary_scaling=config.rotary_scaling, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, tp_rank=config.mapping.tp_rank) ### Added deepseek MoE and shared_experts ### First decoder layer: MLA + dense MLP + input_layernorm(RMSNorm) + post_attention_layernorm(RMSNorm) ### Rest decoder layer: MLA + MoE MLP + MoE Gate + shared_experts(MLP) + input_layernorm(RMSNorm) + post_attention_layernorm(RMSNorm) ### Added MLA in co-testing phase, use standard attention for MoE testing ### Distinguish dense MLP and MoE MLP # dense_config = DenseConfig(intermediate_size=config.intermediate_size) moe_config = MoeConfig( num_experts=config.moe_num_experts, shared_expert_intermediate_size=config.moe_num_shared_experts * config.moe_inter_size, top_k=config.moe_top_k, normalization_mode=config.moe_renorm_mode, device_limited_n_group=config.moe_n_group, device_limited_topk_group=config.moe_topk_group, device_limited_routed_scaling_factor=config. moe_routed_scaling_factor) # layer_config = LayerMLPConfig(config=[dense_config, moe_config], moe_layer_idx_min=0, # moe_layer_idx_max=config.num_hidden_layers, # total_num_layers=config.num_hidden_layers) if moe_config.num_experts > 0 and layer_idx > 0: hidden_act = config.hidden_act mlp_hidden_size = config.moe_inter_size mlp_kwargs = {'moe_config': moe_config, 'mapping': config.mapping} if moe_config.shared_expert_intermediate_size > 0: ClsMLP = SharedMoE mlp_kwargs['use_shared_gate'] = False mlp_kwargs['use_side_stream'] = False else: ClsMLP = MOE else: ClsMLP = GatedMLP mlp_hidden_size = config.intermediate_size hidden_act = non_gated_version( config.hidden_act) # back to non gated for dense layers mlp_kwargs = {} self.mlp = ClsMLP(hidden_size=config.hidden_size, ffn_hidden_size=mlp_hidden_size, hidden_act=hidden_act, dtype=config.dtype, bias=False, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, **mlp_kwargs) ### Pose layernorm in Deepseek v2 is same as Llama self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) def forward(self, hidden_states, attention_mask=None, use_cache=False, spec_decoding_params=None, kv_cache_params=None, attention_params=None): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) attention_output = self.attention( hidden_states=hidden_states, use_cache=use_cache, spec_decoding_params=spec_decoding_params, kv_cache_params=kv_cache_params, attention_params=attention_params) if use_cache: attention_output, presents = attention_output hidden_states = residual + attention_output residual_attn = hidden_states hidden_states = self.post_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual_attn + hidden_states if use_cache: return (hidden_states, presents) return hidden_states class DeepseekV2Model(Module): def __init__(self, config: PretrainedConfig) -> None: super().__init__() init_all_reduce_helper() # enable use_customer_all_reduce self.dtype = config.dtype self.mapping = config.mapping if self.mapping.is_first_pp_rank(): self.vocab_embedding = Embedding(config.vocab_size, config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(DeepseekV2DecoderLayer, config) if self.mapping.is_last_pp_rank(): self.ln_f = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) self.head_num = config.num_attention_heads self.head_size = config.qk_nope_head_dim + config.qk_rope_head_dim def forward(self, input_ids, position_ids=None, use_cache=False, attention_mask=None, spec_decoding_params=None, kv_cache_params=None, attention_params=None, hidden_states=None, prompt_embedding_table: Optional[Tensor] = None, prompt_tasks: Optional[Tensor] = None, prompt_vocab_size: Optional[Tensor] = None): ptuning_args = [ prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] if self.mapping.is_first_pp_rank(): hidden_states = self.vocab_embedding(input_ids, *ptuning_args) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) hidden_states = self.layers.forward( hidden_states, use_cache=use_cache, kv_cache_params=kv_cache_params, attention_params=attention_params, spec_decoding_params=spec_decoding_params) if use_cache: hidden_states, presents = hidden_states if self.mapping.is_last_pp_rank(): hidden_states = self.ln_f(hidden_states) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) if use_cache: return (hidden_states, tuple(presents)) return hidden_states class DeepseekV2ForCausalLM(DecoderModelForCausalLM): def __init__(self, config: PretrainedConfig): transformer = DeepseekV2Model(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) if config.mapping.is_last_pp_rank(): lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) else: lm_head = None self.mapping = config.mapping super().__init__(config, transformer, lm_head) @classmethod def from_hugging_face(cls, hf_model, model_dir, dtype: str = 'auto', mapping: Optional[Mapping] = None, override_fields={}, **kwargs): assert hf_model is not None if mapping is None: mapping = Mapping() config = create_trt_config_from_hf(model_dir, dtype, mapping=mapping, override_fields=override_fields) print(config) pretrained_config = PretrainedConfig.from_dict(config) pretrained_config.set_rank(mapping.rank) # TODO:remove this hack if dtype == 'auto': dtype = getattr(config, 'torch_dtype', None) if dtype is None: dtype = 'float16' if isinstance(dtype, torch.dtype): dtype = torch_dtype_to_str(dtype) if dtype == 'float32': # should remove "float32" dtype = 'float16' if dtype == 'bfloat16' and torch.cuda.get_device_properties( 0).major < 8: logger.warning( "Pre SM 80 GPUs do not support bfloat16, fallback to float16") dtype = 'float16' deepseek = cls.from_config(pretrained_config) weights = convert_deepseekv2( hf_model, config, mapping, dtype=dtype, use_parallel_embedding=config.get('use_parallel_embedding', False), sharding_dim=config.get('embedding_sharding_dim', 0)) deepseek.load(weights) return deepseek