/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/layers/banWordsLayer.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/kernels/banBadWords.h" #include "tensorrt_llm/kernels/banRepeatNgram.h" #include "tensorrt_llm/layers/defaultDecodingParams.h" #include "tensorrt_llm/layers/layerUtils.h" #include using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::runtime; namespace tensorrt_llm { namespace layers { template BanWordsLayer::BanWordsLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain, cudaStream_t stream, std::shared_ptr allocator) : BaseLayer(decoderDomain, stream, std::move(allocator)) , mDecodingMode(mode) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); initialize(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template BanWordsLayer::~BanWordsLayer() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); freeBuffer(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::initialize() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); allocateBuffer(); mNoRepeatNgramSize.resize(mDecoderDomain.getBatchSize()); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::allocateBuffer() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); if (mDecodingMode.isUseNoRepeatNgramSize()) { mNoRepeatNgramSizeDevice = mAllocator->reMalloc(mNoRepeatNgramSizeDevice, sizeof(SizeType32) * mDecoderDomain.getBatchSize(), false); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::freeBuffer() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); if (mDecodingMode.isUseNoRepeatNgramSize()) { mAllocator->free((void**) (&mNoRepeatNgramSizeDevice)); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots, std::shared_ptr baseSetupParams) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto setupParams = std::dynamic_pointer_cast(baseSetupParams); std::vector batchSlotsVec(batchSize); std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0); auto batchSlotsHost = batchSlots ? batchSlots : batchSlotsVec.data(); auto const& penaltyParams = setupParams->penaltyParams; bool const useNoRepeatNgramSize = mDecodingMode.isUseNoRepeatNgramSize() && penaltyParams.noRepeatNgramSize.has_value(); FillBuffers const fillBuffers{batchSize, mDecoderDomain.getBatchSize(), mStream}; mUseNoRepeatNgramSize |= useNoRepeatNgramSize; if (mUseNoRepeatNgramSize) { fillBuffers(penaltyParams.noRepeatNgramSize, DefaultDecodingParams::getNoRepeatNgramSize(), mNoRepeatNgramSize, mNoRepeatNgramSizeDevice, batchSlotsHost, std::make_pair(0.f, std::numeric_limits::max()), "no_repeat_ngram_size"); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::banRepeatNGrams(Tensor& logits, std::shared_ptr const& outputs, std::shared_ptr const& inputs, SizeType32 const* batchSlots, SizeType32 const* noRepeatNgramSizeDevice, DecoderDomain const& decoderDomain, SizeType32 maxSeqLen, bool useNoRepeatNgramSize, cudaStream_t stream) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); // auto const maxStep = inputs->step; // TODO (bhsueh) Should we use step? but current inputs->step is always 0. auto const maxStep = maxSeqLen; if (useNoRepeatNgramSize) { invokeBanRepeatNgram(logits.template getPtr(), outputs->output_ids_ptr.template getPtr(), reinterpret_cast( inputs->finished.value_or(Tensor{}).template getPtr()), outputs->parent_ids_ptr.template getPtr(), batchSlots, outputs->sequence_length->template getPtr(), decoderDomain.getBatchSize(), decoderDomain.getBeamWidth(), maxSeqLen, noRepeatNgramSizeDevice, decoderDomain.getVocabSizePadded(), maxStep, stream); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::banBadWords(Tensor& logits, std::shared_ptr const& outputs, std::shared_ptr const& inputs, SizeType32 const* batchSlots, DecoderDomain const& decoderDomain, SizeType32 maxSeqLen, cudaStream_t stream) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto const maxBadWordsLength = inputs->max_bad_words_len; if (maxBadWordsLength) { auto const** badWordsPtr = inputs->bad_words_ptr->template getPtr(); auto const* badWordsLens = inputs->bad_words_lengths->template getPtr(); invokeBanBadWords((T*) logits.template getPtr(), outputs->output_ids_ptr.template getPtr(), decoderDomain.getBeamWidth() > 1 ? outputs->parent_ids_ptr.template getPtr() : nullptr, batchSlots, decoderDomain.getBatchSize(), decoderDomain.getBeamWidth(), badWordsPtr, badWordsLens, maxBadWordsLength, decoderDomain.getVocabSizePadded(), outputs->sequence_length->template getPtr(), maxSeqLen, stream); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BanWordsLayer::forwardAsync( std::shared_ptr baseOutputs, std::shared_ptr baseInputs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto inputs = std::dynamic_pointer_cast(baseInputs); auto outputs = std::dynamic_pointer_cast(baseOutputs); auto const localDecoderDomain = getLocalDecoderDomain(inputs, mDecoderDomain); auto const maxSeqLen = outputs->output_ids.shape[outputs->output_ids.shape.size() - 1]; auto batchSlots = inputs->batch_slots ? inputs->batch_slots->template getPtr() : nullptr; banRepeatNGrams(inputs->logits.value(), outputs, inputs, batchSlots, mNoRepeatNgramSizeDevice, localDecoderDomain, maxSeqLen, mUseNoRepeatNgramSize, mStream); banBadWords(inputs->logits.value(), outputs, inputs, batchSlots, localDecoderDomain, maxSeqLen, mStream); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template class BanWordsLayer; template class BanWordsLayer; } // namespace layers } // namespace tensorrt_llm