# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import numpy as np import torch import tensorrt_llm sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session class TestArange(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_arange_int(self): # test data start = 0 end = 128 # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): output = tensorrt_llm.functional.arange(start=start, end=end, dtype="int32") output.mark_output('output', "int32") # trt run inputs = {} session = create_session(builder, network, precision="float32") outputs = run_session(session, inputs) ref = torch.arange(start, end).int().cuda() torch.testing.assert_close(outputs['output'], ref) def test_arange_tensor(self): # test data s = 0 e = 128 dtype = 'int32' # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): start = tensorrt_llm.functional.constant(np.array(s, dtype=np.int32)) end_tensor = tensorrt_llm.functional.constant( np.array([0] * e, dtype=np.int32)) output = tensorrt_llm.functional.arange( start=start, end=tensorrt_llm.functional.shape(end_tensor, 0), dtype=dtype) output.mark_output('output', dtype) # trt run inputs = {} session = create_session(builder, network, precision="float32") outputs = run_session(session, inputs) # pytorch run ref = torch.arange(s, e).int().cuda() # compare diff torch.testing.assert_close(outputs['output'], ref)