/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/cudaEvent.h" #include "tensorrt_llm/runtime/cudaStream.h" #include "tensorrt_llm/runtime/iStatefulGptDecoder.h" #include "tensorrt_llm/runtime/iTensor.h" #include #include #include #include namespace tensorrt_llm::runtime { namespace decoder_batch { class Request { public: using TensorPtr = std::shared_ptr; explicit Request(TensorPtr ids, std::optional maxNewTokens = std::nullopt, std::optional endId = std::nullopt, std::optional padId = std::nullopt) : ids{std::move(ids)} , maxNewTokens{maxNewTokens} , endId{endId} { } // mandatory parameters TensorPtr ids; // [inputSeqLen], the input sequence of token ids, on gpu // optional parameters std::optional maxNewTokens; // maximum number of tokens to generate for this request std::optional endId; // end token id TensorPtr embeddingBias; // [vocabSizePadded], on gpu TensorPtr badWordsList; // [2, badWordsLength], on gpu TensorPtr stopWordsList; // [2, stopWordsLength], on gpu }; class Input : public decoder::Input { public: using Base = decoder::Input; explicit Input(TensorPtr logits) : Base{std::move(logits)} { auto const batchSize = this->logits->getShape().d[0]; active.resize(batchSize, true); } explicit Input(TensorPtr logits, std::vector const& active) : Base{std::move(logits)} , active{active} { auto const batchSize = static_cast(this->logits->getShape().d[0]); TLLM_CHECK_WITH_INFO(this->active.size() == batchSize, "'active' vector size does not match logits batchSize"); } // control activity of decoder slots in batch std::vector active; // [batchSize] }; using Output = decoder::Output; class Token { public: explicit Token(CudaEvent&& event, std::vector const& active) : event(std::move(event)) , active(active) { } CudaEvent event; std::vector active; }; } // namespace decoder_batch //! GPT decoder class with support for in-flight batching class IGptDecoderBatch : public virtual IStatefulGptDecoder { public: using CudaStreamPtr = std::shared_ptr; using TensorPtr = std::shared_ptr; using TokenPtr = std::unique_ptr; //! @brief Initialize the decoder at `batchIdx` with a new `request`. virtual void newRequest( SizeType batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) = 0; //! @brief Run one step for all requests without blocking the host process and return the token for synchronization. virtual TokenPtr forwardAsync(decoder_batch::Output& output, decoder_batch::Input const& input) = 0; //! @brief Wait for the call to `forwardAsync` associated with a token to complete. virtual void forwardSync(decoder_batch::Token const& token) = 0; //! @brief Run one step for all requests and wait for completion on the host. virtual void forward(decoder_batch::Output& output, decoder_batch::Input const& input) { forwardSync(*forwardAsync(output, input)); } //! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token //! ids without padding for request `batchIdx`, on gpu virtual TensorPtr getOutputIds(SizeType batchIdx) const = 0; //! Execute postProcessRequest and returns OutputIds for request `batchIdx`. //! Result will only be available after event returned //! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token ids without //! padding for request `batchIdx`, on gpu virtual std::tuple getFinalOutputIds(SizeType batchIdx) const = 0; //! @returns [batchSize, beamWidth], marks finished requests (per beam), on gpu virtual TensorPtr getFinishedBeams() const = 0; //! @returns [batchSize, beamWidth], total sequence lengths (per beam), on gpu virtual TensorPtr getOutputLengths() const = 0; //! @returns [batchSize (actual)], marks finished requests (per batch) virtual std::vector getFinished() const = 0; //! @returns [batchSize, beamWidth], cumulative log probabilities (per beam), on gpu virtual TensorPtr getCumLogProbs() const = 0; virtual TensorPtr getParentIds() const = 0; virtual std::vector getNbSteps() const = 0; protected: IGptDecoderBatch() = default; }; } // namespace tensorrt_llm::runtime