/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #pragma once namespace tensorrt_llm { namespace kernels { // In original beam search implementation, if a beam is finished, we set it as // finished and only continue to do beam search on remain beams (namely, // beam_width - 1 beams in next step) // // In this implementation, when a beam is finished, we trace the path and record // it in output_ids_tgt, and also record the normalized scores. And the beam // search continue to use `beam_width` beams in next step. // // After we collect `beam_width` beams, we will sort them by their norm_scores. struct BeamHypotheses { int* output_ids_tgt = nullptr; int* sequence_lengths_tgt = nullptr; float* cum_log_probs = nullptr; // cum_log float* normed_scores = nullptr; // cum_log / (length**length_penalty) float* log_probs = nullptr; // log probs of each generated token float* min_normed_scores = nullptr; // record the min normed scores for each batch int* num_beams = nullptr; // the number of finished beams we collect bool* is_done = nullptr; // Used to set inputs const int* output_ids_src; const int** output_ids_src_ptr; const int* parent_ids_src; const int** parent_ids_src_ptr; const int* sequence_lengths_src; const int* end_ids; const float* log_probs_src; const int* input_lengths; // some variables for kernels int step; int ite; int batch_size; int local_batch_size; int max_seq_len; float length_penalty; bool early_stopping = true; bool is_return_normed_score = true; // return normed_cum_log_probs or cum_log_probs }; template void invokeTopkBeamSearch(void* workspace, size_t& workspace_size, T* log_probs, int* ids, BeamHypotheses* beam_hyps, const bool* finished, const int* sequence_lengths, const int batch_size, const int beam_width, const int vocab_size_padded_, const T diversity_rate, const float length_penalty, const int* end_ids, cudaStream_t stream); template void invokeTileEncoderResults(T* tiled_encoder_output, int* tiled_encoder_sequence_length, const T* encoder_output, const int* encoder_sequence_length, const size_t batch_size, const size_t beam_width, const size_t mem_max_seq_len, const size_t d_model, cudaStream_t stream); void invokeInsertUnfinishedPath(BeamHypotheses beam_hyps, const bool* finished, const float* cum_log_probs, const int batch_size, const int beam_width, cudaStream_t stream); void invokeCopyBatchMajorToGeneralPtr( void* output_ids_ptr, int* output_ids, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream); void invokeCopyGeneralPtrToBatchMajor( int* output_ids, void* output_ids_ptr, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream); void invokeSeqlenMajorToBatchMajor( int* batchMajoredIds, int* seqlenMajorIds, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream); } // namespace kernels } // namespace tensorrt_llm