/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include #include #include "fused_multihead_attention_common.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tmaDescriptor.h" namespace tensorrt_llm { namespace kernels { //////////////////////////////////////////////////////////////////////////////////////////////////// class MHARunner { public: MHARunner(const Data_type dataType, const int numHeads, const int headSize, const float qScaling); MHARunner() = default; virtual ~MHARunner() = default; virtual void setup(const int b, const int s, const int total_seqlen, const bool has_alibi = false, const bool scale_alibi = false, const int tp_size = 1, const int tp_rank = 0) = 0; static bool fmha_supported(const int headSize, const int sm); virtual bool fmha_supported() = 0; virtual void setup_flags(const bool force_fp32_acc, const bool is_s_padded, const bool causal_mask, const int num_kv_heads /* MQA or GQA */) = 0; virtual void run(const void* input, const void* cu_seqlens, void* output, cudaStream_t stream) = 0; virtual bool isValid(int s) const = 0; }; //////////////////////////////////////////////////////////////////////////////////////////////////// // Workflow of fmha runner: // 1. check if FMHA kernels are supported statically. // 2. construct FMHA runner object. // 3. setup_flags (used by all kernels). // 4. setup runtime parameters (used by this specific case). // 5. run the kernel (with all needed device pointers). class FusedMHARunnerV2 : public MHARunner { public: FusedMHARunnerV2(const Data_type dataType, const int numHeads, const int headSize, const float qScaling); ~FusedMHARunnerV2(); // for pimpl void setup(const int b, const int s, const int total_seqlen, const bool has_alibi = false, const bool scale_alibi = false, const int tp_size = 1, const int tp_rank = 0) override; bool fmha_supported() override; void run(const void* input, const void* cu_seqlens, void* output, cudaStream_t stream) override; void setup_flags(const bool force_fp32_acc, const bool is_s_padded, const bool causal_mask, const int num_kv_heads /* MQA or GQA */) override; bool isValid(int s) const override; private: class mhaImpl; std::unique_ptr pimpl; }; } // namespace kernels } // namespace tensorrt_llm