/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #ifndef CUDART_VERSION #error CUDART_VERSION Undefined! #elif (CUDART_VERSION >= 11050) #include #else #include "3rdparty/cub/cub.cuh" #endif #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/common/reduceKernelUtils.cuh" #include "tensorrt_llm/common/stringUtils.h" #include "tensorrt_llm/kernels/samplingTopKKernels.h" using namespace tensorrt_llm::common; namespace tensorrt_llm { namespace kernels { __global__ void curandInitialize(curandState_t* state, const int size, const unsigned long long random_seed) { if (threadIdx.x + blockIdx.x * blockDim.x < size) { curand_init(random_seed, 0, 0, &state[blockIdx.x * blockDim.x + threadIdx.x]); } } void invokeCurandInitialize( curandState_t* state, const size_t batch_size, const unsigned long long random_seed, cudaStream_t stream) { dim3 block(256); dim3 grid((int) (ceil(batch_size * 1.0 / 256))); curandInitialize<<>>(state, batch_size, random_seed); } __global__ void curandBatchInitialize(curandState_t* states, const int size, const unsigned long long* random_seeds) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < size) { curand_init(random_seeds[idx], 0, 0, &states[idx]); } } void invokeCurandBatchInitialize( curandState_t* states, const size_t batch_size, const unsigned long long* random_seeds, cudaStream_t stream) { dim3 block(256); dim3 grid((int) (ceil(batch_size * 1.0 / 256))); curandBatchInitialize<<>>(states, batch_size, random_seeds); } template __global__ void addBiasEndMask(T* logits, const T* bias, const int* end_ids, const bool* finished, const int vocab_size, const int vocab_size_padded) { int bid = blockIdx.x; bool finish = finished != nullptr ? finished[bid] : false; int offset = bid * vocab_size_padded; const bool IS_FP16 = std::is_same::value; const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX; for (int tid = threadIdx.x; tid < vocab_size_padded; tid += blockDim.x) { if (tid >= vocab_size) { logits[offset + tid] = -MAX_T_VAL; } else if (finish) { logits[offset + tid] = (tid == end_ids[bid]) ? MAX_T_VAL : -MAX_T_VAL; } else { if (bias != nullptr) { logits[offset + tid] += bias[tid]; } } } } template void invokeAddBiasEndMask(T* logits, const T* bias, const int* end_ids, const bool* finished, const int batch_size, const int vocab_size, const int vocab_size_padded, cudaStream_t stream) { dim3 grid(batch_size); dim3 block(min(vocab_size_padded, 1024)); /*n is the vocab_size, e.g., 30000, 7000.... vocab_size is usually very big. */ addBiasEndMask<<>>(logits, bias, end_ids, finished, vocab_size, vocab_size_padded); } template void invokeAddBiasEndMask(float* logits, const float* bias, const int* end_ids, const bool* finished, const int batch_size, const int vocab_size, const int vocab_size_padded, cudaStream_t stream); template void invokeAddBiasEndMask(half* logits, const half* bias, const int* end_ids, const bool* finished, const int batch_size, const int vocab_size, const int vocab_size_padded, cudaStream_t stream); template __global__ void topk_stage1(const T* __restrict log_probs, T* tmp_log_probs, int* topk_tmp_id_buf, T* topk_tmp_val_buf, const bool* finished, const int max_top_k, const int* top_ks, const int vocab_size, const int* end_ids, const bool* skip_decode) { typedef cub::BlockReduce, BLOCK_SIZE_> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; const int tid = threadIdx.x; const int bid = blockIdx.x; const int batch_id = bid / BLOCKS_PER_BEAM_; // row id for log_probs if (skip_decode != nullptr && skip_decode[batch_id]) { return; } const int block_lane = bid % BLOCKS_PER_BEAM_; // block id for a beam const int k = (top_ks != nullptr) ? top_ks[batch_id] : max_top_k; // batch_id = batch index const int tmp_log_buf_index = batch_id * vocab_size; const int tmp_topk_buf_index = batch_id * BLOCKS_PER_BEAM_ * max_top_k + block_lane * k; TopK_2 partial; const bool IS_FP16 = std::is_same::value; const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX; if (finished != nullptr && finished[batch_id] == true) { if (tid < k) { const int index = tmp_topk_buf_index + tid; if (block_lane == 0 && tid == 0) { const int end_id = end_ids[batch_id]; topk_tmp_id_buf[index] = tmp_log_buf_index + end_id; topk_tmp_val_buf[index] = log_probs[tmp_log_buf_index + end_id]; } else { topk_tmp_id_buf[index] = -1; topk_tmp_val_buf[index] = -MAX_T_VAL; } } return; } for (int elem_id = tid + block_lane * BLOCK_SIZE_; elem_id < vocab_size; elem_id += BLOCK_SIZE_ * BLOCKS_PER_BEAM_) { int index = elem_id + tmp_log_buf_index; tmp_log_probs[index] = log_probs[index]; } for (int ite = 0; ite < k; ite++) { partial.init(); #pragma unroll for (int elem_id = tid + block_lane * BLOCK_SIZE_; elem_id < vocab_size; elem_id += BLOCK_SIZE_ * BLOCKS_PER_BEAM_) { int index = elem_id + tmp_log_buf_index; partial.insert(tmp_log_probs[index], index); } TopK_2 total = BlockReduce(temp_storage).Reduce(partial, reduce_topk_op_2); if (tid == 0) { const int index = tmp_topk_buf_index + ite; topk_tmp_id_buf[index] = total.p; topk_tmp_val_buf[index] = total.u; if (total.p >= 0) { tmp_log_probs[total.p] = -MAX_T_VAL; } } __syncthreads(); } } template __global__ void topk_stage2_sampling(const int* __restrict topk_tmp_id_buf, T* topk_tmp_val_buf, int** ids, int* sequence_lengths, bool* finished, float* cum_log_probs, float* output_log_probs, const int max_top_k, const int* top_ks, const float top_p, const float* top_ps, curandState_t* curandstate, const int* end_ids, const int vocab_size, const bool* skip_decode) { const bool IS_FP16 = std::is_same::value; const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX; const int tid = threadIdx.x; const int batch_id = blockIdx.x; if (skip_decode != nullptr && skip_decode[batch_id]) { return; } const int k = (top_ks != nullptr) ? top_ks[batch_id] : max_top_k; const float prob_threshold = (top_ps != nullptr) ? top_ps[batch_id] : top_p; const int size = k * BLOCKS_PER_BEAM_; const int stride = max_top_k * BLOCKS_PER_BEAM_; typedef cub::BlockReduce, BLOCK_SIZE_> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; extern __shared__ char array[]; __shared__ float rand_num; __shared__ float s_sum; __shared__ float s_max; T* s_val = topk_tmp_val_buf + batch_id * stride; int* s_id = reinterpret_cast(array); if (tid == 0) { s_sum = 0.0f; } TopK_2 partial; if (finished != nullptr && finished[batch_id] == true) { ids[batch_id][sequence_lengths[batch_id]] = end_ids[batch_id]; return; } float* s_val2 = reinterpret_cast(s_id + k); for (int ite = 0; ite < k; ite++) { partial.init(); #pragma unroll for (int i = tid; i < size; i += BLOCK_SIZE_) { partial.insert((float) s_val[i], i); } TopK_2 total = BlockReduce(temp_storage).Reduce(partial, reduce_topk_op_2); if (tid == 0) { if (ite == 0) { s_max = total.u; } s_id[ite] = total.p; s_val[total.p] = -MAX_T_VAL; // when cum_log_probs are computed, topk_tmp_val_buf (logits_buf_) are // already pre-processed by softmax_kernel if (cum_log_probs == nullptr && output_log_probs == nullptr) { total.u = __expf(total.u - s_max); } s_val2[ite] = total.u; s_sum += total.u; } __syncthreads(); } if (tid == 0) { rand_num = (float) curand_uniform(curandstate + blockIdx.x) * prob_threshold * s_sum; for (int i = 0; i < k; i++) { float exp_logit = s_val2[i]; rand_num = rand_num - exp_logit; if (rand_num <= 0.0f || i == k - 1) { ids[batch_id][sequence_lengths[batch_id]] = topk_tmp_id_buf[batch_id * stride + s_id[i]] % vocab_size; if (cum_log_probs != nullptr || output_log_probs != nullptr) { float log_prob = logf(exp_logit); if (cum_log_probs != nullptr) { cum_log_probs[batch_id] += log_prob; } if (output_log_probs != nullptr) { // 'output_log_probs' is the probability induced by the top-k // sampling. We normalize the probability 'exp_logit' of the // selected token by the probability 's_sum' of a set of top-k // tokens, meaning the log_prob is the probability of the selected // token, conditioned on the event that it is selected, i.e., // log_prob = log P(i | i is in top-k) = log(exp_logit / s_sum). output_log_probs[batch_id] = log_prob - logf(s_sum); } } break; } } if (sequence_lengths != nullptr && finished != nullptr) { int seqlen = sequence_lengths[batch_id]; finished[batch_id] = ids[batch_id][seqlen] == end_ids[batch_id]; if (!finished[batch_id]) { sequence_lengths[batch_id] = seqlen + 1; } } } } #define CASE_K(K_MAX, BLOCK_SIZE_1_, BLOCK_SIZE_2_, BLOCKS_PER_BEAM_) \ topk_stage1 \ <<>>(log_probs, temp_log_probs, topk_tmp_id_buf, \ topk_tmp_val_buf, finished, max_top_k, top_ks, vocab_size, end_ids, skip_decode); \ topk_stage2_sampling \ <<>>(topk_tmp_id_buf, \ topk_tmp_val_buf, ids, sequence_lengths, finished, cum_log_probs, output_log_probs, max_top_k, top_ks, \ top_p, top_ps, curandstate, end_ids, vocab_size, skip_decode); \ break; template void invokeBatchTopKSampling(void* workspace, size_t& workspace_size, const T* log_probs, int** ids, int* sequence_lengths, bool* finished, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int max_top_k, const int* top_ks, const float top_p, const float* top_ps, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); // Not allow an ambiguous inputs top_p and top_ps. assert(top_p == 1.0f || top_ps == nullptr); const int vocab_size = vocab_size_padded; const int max_block_per_beam = 8; int temp_log_probs_buf_size = batch_size * vocab_size; // type float int topk_tmp_ids_buf_size = batch_size * max_top_k * max_block_per_beam; // type int int topk_tmp_val_buf_size = batch_size * max_top_k * max_block_per_beam; // type float // prevent memory misaligned address temp_log_probs_buf_size = (int) (ceil(temp_log_probs_buf_size / 4.)) * 4; topk_tmp_ids_buf_size = (int) (ceil(topk_tmp_ids_buf_size / 4.)) * 4; topk_tmp_val_buf_size = (int) (ceil(topk_tmp_val_buf_size / 4.)) * 4; if (workspace == nullptr) { workspace_size = sizeof(T) * temp_log_probs_buf_size + sizeof(int) * topk_tmp_ids_buf_size + sizeof(T) * topk_tmp_val_buf_size; return; } T* temp_log_probs = (T*) workspace; int* topk_tmp_id_buf = (int*) (temp_log_probs + temp_log_probs_buf_size); T* topk_tmp_val_buf = (T*) (topk_tmp_id_buf + topk_tmp_ids_buf_size); // TODO (bhsueh) need to support case top_k = [2, 17] (use different cases of max_top_k) int log_max_top_k(0); int recursor(max_top_k - 1); while (recursor >>= 1) ++log_max_top_k; switch (log_max_top_k) { case 0: case 1: case 2: case 3: // 0 < max_top_k <= 16 CASE_K(16, 128, 128, 8); case 4: // 16 < max_top_k <= 32 CASE_K(32, 256, 128, 8); case 5: // 32 < max_top_k <= 64 CASE_K(64, 256, 256, 8); case 6: case 7: case 8: case 9: // 64 < max_top_k <= 1024 CASE_K(1024, 256, 256, 8); default: throw std::domain_error(fmtstr("top-k kernel supports 1<=k<=1024 but got k=%d", max_top_k)); } } #undef CASE_K template void invokeBatchTopKSampling(void* workspace, size_t& workspace_size, const float* log_probs, int** ids, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int max_top_k, const int* top_ks, const float top_p, const float* top_ps, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode); template void invokeBatchTopKSampling(void* workspace, size_t& workspace_size, const half* log_probs, int** ids, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int max_top_k, const int* top_ks, const float top_p, const float* top_ps, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode); template void invokeTopKSampling(void* workspace, size_t& workspace_size, const T* log_probs, int** ids, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode) { invokeBatchTopKSampling(workspace, workspace_size, log_probs, ids, sequence_lengths, finished_buf, cum_log_probs, output_log_probs, curandstate, top_k, nullptr, top_p, nullptr, vocab_size_padded, end_ids, stream, batch_size, skip_decode); } template void invokeTopKSampling(void* workspace, size_t& workspace_size, const float* log_probs, int** ids, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode); template void invokeTopKSampling(void* workspace, size_t& workspace_size, const half* log_probs, int** ids, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode); template void invokeTopKTopPSampling(void* workspace, size_t& workspace_size, int** output_ids, const T* logits, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int batch_size, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream) { // invokeTopKTopPSampling will be deprecated. Please use invokeTopKSampling // instead. invokeTopKSampling(workspace, workspace_size, logits, output_ids, sequence_lengths, finished_buf, cum_log_probs, output_log_probs, curandstate, top_k, top_p, vocab_size_padded, end_ids, stream, batch_size, nullptr); } template void invokeTopKTopPSampling(void* workspace, size_t& workspace_size, int** output_ids, const float* logits, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int batch_size, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream); template void invokeTopKTopPSampling(void* workspace, size_t& workspace_size, int** output_ids, const half* logits, int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int batch_size, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream); } // namespace kernels } // namespace tensorrt_llm