/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/reduceKernelUtils.cuh" #include "tensorrt_llm/kernels/stopCriteriaKernels.h" using namespace tensorrt_llm::common; namespace tensorrt_llm { namespace kernels { __global__ void stop_words_criterion(const int** output_ids, const int** parent_ids, const int* stop_words, bool* finished, const int* sequence_lengths, size_t id_offset, size_t stop_words_len, int batch_size, int beam_width, int max_seq_len) { const int id = blockIdx.x * blockDim.x + threadIdx.x; const int batch_idx = blockIdx.y / beam_width; const int beam_idx = blockIdx.y % beam_width; const int* base_stop_words = stop_words + batch_idx * 2 * stop_words_len; const int* base_offsets = base_stop_words + stop_words_len; if (id >= stop_words_len || base_offsets[id] < 0) { return; } const int item_end = base_offsets[id]; const int item_start = (id > 0) ? base_offsets[id - 1] : 0; const int item_size = item_end - item_start; /* The single-token case unconditionally bans the token */ bool should_stop = false; const int current_step = sequence_lengths[blockIdx.y] - 1; // need to minus 1 because the sequence_lengths is updated in this step /* Enough previously generated tokens to look for a match */ if (current_step + 1 >= item_size) { should_stop = true; int parent_id = beam_idx; const bool gather_beam = beam_width > 1; for (int token_idx = item_size - 1; token_idx >= 0; token_idx--) { const int previous_token = output_ids[batch_idx][parent_id * max_seq_len + current_step - (item_size - 1) + token_idx]; if (previous_token != base_stop_words[item_start + token_idx]) { should_stop = false; break; } if (gather_beam) { parent_id = parent_ids == nullptr ? 0 : parent_ids[batch_idx][parent_id * max_seq_len + current_step - (item_size - 1) + token_idx]; if (parent_id < 0 || parent_id >= beam_width) { should_stop = false; break; } } } } if (should_stop) { finished[batch_idx * beam_width + beam_idx] = true; } } void invokeStopWordsCriterion(const int** output_ids, const int** parent_ids, const int* stop_words, bool* finished, const int* sequence_lengths, size_t id_offset, size_t stop_words_len, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream) { // Check if we have sampled a word from the stop_words list. If so, stop the // sequence. dim3 block, grid; constexpr size_t max_block_size{256}; block.x = min(((stop_words_len + 32 - 1) / 32) * 32, max_block_size); grid.x = (stop_words_len + block.x - 1) / block.x; grid.y = batch_size * beam_width; stop_words_criterion<<>>(output_ids, parent_ids, stop_words, finished, sequence_lengths, id_offset, stop_words_len, batch_size, beam_width, max_seq_len); sync_check_cuda_error(); } __global__ void length_criterion(bool* finished, int* finished_sum, const uint32_t* sequence_limit_length, const int* sequence_lengths, int batch_size, int beam_width) { int thread_finished_count = 0; for (int index = threadIdx.x; index < batch_size * beam_width; index += blockDim.x) { const int batch_idx = index / beam_width; finished[index] |= sequence_lengths[index] >= sequence_limit_length[batch_idx]; thread_finished_count += finished[index] ? 1 : 0; } if (finished_sum) { int block_finished_count = 0; if (blockDim.x <= 32) { block_finished_count = warpReduceSum(thread_finished_count); } else { block_finished_count = blockReduceSum(thread_finished_count); } __syncthreads(); if (threadIdx.x == 0) { finished_sum[0] = block_finished_count; } } } void invokeLengthCriterion(bool* finished, int* finished_sum, const uint32_t* sequence_limit_length, const int* sequence_lengths, int batch_size, int beam_width, cudaStream_t stream) { // Check if we have attained the sequence length limit. If so, stop the // sequence. In addition, check if all sequences are stopped and return the // result in should_stop dim3 block{min(512, uint32_t(batch_size * beam_width))}; dim3 grid{1}; length_criterion<<>>( finished, finished_sum, sequence_limit_length, sequence_lengths, batch_size, beam_width); sync_check_cuda_error(); } } // namespace kernels } // namespace tensorrt_llm