/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/kernels/gptKernels.h" #include "tensorrt_llm/kernels/kvCacheUtils.h" #include namespace tensorrt_llm { namespace kernels { template void invokeAddQKVBiasIA3Transpose(T* q_buf, T* k_buf, T* v_buf, T* Q, const T* bias_Q, T* K, const T* bias_K, T* V, const T* bias_V, const int batch_size, const int seq_len, const int head_num, const int size_per_head, const int* ia3_tasks, const T* ia3_key_weights, const T* ia3_value_weights, cudaStream_t stream); template struct MaskedSoftmaxParam { // Common parameters. T* attention_score = nullptr; // (batch_size, head_num, q_length, k_length) const T_IN* qk = nullptr; // (batch_size, head_num, q_length, k_length) const T* attention_mask = nullptr; // (batch_size, q_length, k_length) int batch_size = 0; int q_length = 0; int k_length = 0; int num_heads = 0; T qk_scale = T(0.0f); // Optional parameters that depend on the type of attention. // The slopes of the linear position bias of ALiBi. const T* linear_bias_slopes = nullptr; // (head_num,), optional }; enum class KvCacheDataType { BASE = 0, INT8, FP8 }; template void invokeMaskedSoftmax(MaskedSoftmaxParam& param, cudaStream_t stream); template void invokeTransposeQKV(T* dst, T* src, const int batch_size, const int seq_len, const int head_num, const int size_per_head, const float* scale, const int int8_mode, cudaStream_t stream); template void invokeAddQKVBiasIA3RebuildPadding(T* Q, const T* bias_Q, T* K, const T* bias_K, T* V, const T* bias_V, T* q_buf, T* k_buf, T* v_buf, const int batch_size, const int seq_len, const int head_num, const int size_per_head, const int valid_word_num, const int* mask_offset, const int* ia3_tasks, const T* ia3_key_weights, const T* ia3_value_weights, cudaStream_t stream); template void invokeTransposeAttentionOutRemovePadding(T* src, T* dst, const int valid_word_num, const int batch_size, const int seq_len, const int head_num, const int size_per_head, const int* mask_offset, const float* scale, const int int8_mode, cudaStream_t stream); template void invokeAddFusedQKVBiasTranspose(T* q_buf, T* k_buf, T* v_buf, T* QKV, const T* qkv_bias, const int* seq_lens, const int* padding_offset, const int batch_size, const int seq_len, const int token_num, const int head_num, const int kv_head_num, const int size_per_head, const bool using_context_fmha, const int rotary_embedding_dim, float rotary_embedding_base, const RotaryScalingType rotary_scale_type, float rotary_embedding_scale, const int rotary_embedding_max_positions, PositionEmbeddingType const position_embedding_type, const float* scale, const int int8_mode, cudaStream_t stream); template void invokeAddFusedQKVBiasTranspose(T* q_buf, T* k_buf, T* v_buf, T* QKV, const T* qkv_bias, const int* seq_lens, const int* padding_offset, const int batch_size, const int seq_len, const int token_num, const int head_num, const int kv_head_num, const int size_per_head, const bool using_context_fmha, cudaStream_t stream) { invokeAddFusedQKVBiasTranspose(q_buf, k_buf, v_buf, QKV, qkv_bias, seq_lens, padding_offset, batch_size, seq_len, token_num, head_num, kv_head_num, size_per_head, using_context_fmha, 0, false, (float*) nullptr, 0, stream); } template void invokeAddFusedQKVBiasTranspose(T* q_buf, T* k_buf, T* v_buf, T* QKV, const int* seq_lens, const int* padding_offset, const int batch_size, const int seq_len, const int token_num, const int head_num, const int kv_head_num, const int size_per_head, const bool using_context_fmha, const int rotary_embedding_dim, float rotary_embedding_base, const RotaryScalingType rotary_scale_type, float rotary_embedding_scale, const int rotary_embedding_max_positions, PositionEmbeddingType const position_embedding_type, const float* scale, const int int8_mode, cudaStream_t stream) { invokeAddFusedQKVBiasTranspose(q_buf, k_buf, v_buf, QKV, (const T*) nullptr, seq_lens, padding_offset, batch_size, seq_len, token_num, head_num, kv_head_num, size_per_head, using_context_fmha, rotary_embedding_dim, rotary_embedding_base, rotary_scale_type, rotary_embedding_scale, rotary_embedding_max_positions, position_embedding_type, scale, int8_mode, stream); } template void invokeTranspose4dBatchMajor(const T* k_src, const T* v_src, KVCacheBuffer& kvTable, const int local_batch_size, const int seq_len, const int max_seq_len, const int size_per_head, const int local_head_num, const KvCacheDataType cache_type, const float* kvScaleOrigQuant, const int* sequence_lengths, cudaStream_t stream); template void invokeApplyBiasRopeUpdateKVCache(T* QKV, KVCacheBuffer& kvTable, const T* qkv_bias, const int* seq_lens, const int* padding_offset, const int batch_size, const int seq_len, const int token_num, const int head_num, const int kv_head_num, const int size_per_head, const int rotary_embedding_dim, const float rotary_embedding_base, const RotaryScalingType rotary_scale_type, const float rotary_embedding_scale, const int rotary_embedding_max_positions, const PositionEmbeddingType position_embedding_type, const float* scale, const int int8_mode, const KvCacheDataType cache_type, const float* kvScaleOrigQuant, cudaStream_t stream); template void invokeAddRelativeAttentionBiasUnaligned(T* qk_buf, const BT* relative_attention_bias, const int batch_size, const int head_num, const int seq_len, const int max_seq_len, cudaStream_t stream, bool implicit = false, int num_buckets = 0, int max_distance = 0, bool bidirectional = true); } // namespace kernels } // namespace tensorrt_llm