/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/stringUtils.h" #include "tensorrt_llm/runtime/memoryCounters.h" #include "tensorrt_llm/runtime/tllmBuffers.h" #include #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; class TllmBuffersTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init) { protected: void SetUp() override { mDeviceCount = tc::getDeviceCount(); if (mDeviceCount == 0) GTEST_SKIP(); } void TearDown() override {} int mDeviceCount; }; TEST_F(TllmBuffersTest, Stream) { CudaStream stream{}; EXPECT_NE(stream.get(), nullptr); auto ptr = std::make_shared(); EXPECT_NE(ptr->get(), nullptr); EXPECT_GE(ptr->getDevice(), 0); CudaStream lease{ptr->get(), ptr->getDevice(), false}; EXPECT_EQ(lease.get(), ptr->get()); } TEST_F(TllmBuffersTest, CudaAllocator) { auto constexpr size = 1024; CudaAllocator allocator{}; auto& counters = MemoryCounters::getInstance(); EXPECT_EQ(counters.getGpu(), 0); auto ptr = allocator.allocate(size); EXPECT_NE(ptr, nullptr); EXPECT_EQ(counters.getGpu(), size); EXPECT_EQ(counters.getGpuDiff(), size); EXPECT_NO_THROW(allocator.deallocate(ptr, size)); EXPECT_EQ(counters.getGpu(), 0); EXPECT_EQ(counters.getGpuDiff(), -size); EXPECT_EQ(allocator.getMemoryType(), MemoryType::kGPU); EXPECT_THROW(allocator.deallocate(ptr, size), std::runtime_error); } TEST_F(TllmBuffersTest, PinnedAllocator) { auto constexpr size = 1024; PinnedAllocator allocator{}; auto& counters = MemoryCounters::getInstance(); EXPECT_EQ(counters.getPinned(), 0); auto ptr = allocator.allocate(size); EXPECT_NE(ptr, nullptr); EXPECT_EQ(counters.getPinned(), size); EXPECT_EQ(counters.getPinnedDiff(), size); EXPECT_NO_THROW(allocator.deallocate(ptr, size)); EXPECT_EQ(counters.getPinned(), 0); EXPECT_EQ(counters.getPinnedDiff(), -size); EXPECT_EQ(allocator.getMemoryType(), MemoryType::kPINNED); EXPECT_THROW(allocator.deallocate(ptr, size), std::runtime_error); } TEST_F(TllmBuffersTest, HostAllocator) { auto constexpr size = 1024; HostAllocator allocator{}; auto& counters = MemoryCounters::getInstance(); EXPECT_EQ(counters.getCpu(), 0); auto ptr = allocator.allocate(size); EXPECT_NE(ptr, nullptr); EXPECT_EQ(counters.getCpu(), size); EXPECT_EQ(counters.getCpuDiff(), size); EXPECT_NO_THROW(allocator.deallocate(ptr, size)); EXPECT_EQ(counters.getCpu(), 0); EXPECT_EQ(counters.getCpuDiff(), -size); EXPECT_EQ(allocator.getMemoryType(), MemoryType::kCPU); } TEST_F(TllmBuffersTest, CudaAllocatorAsync) { auto streamPtr = std::make_shared(); auto constexpr size = 1024; CudaAllocatorAsync allocator{streamPtr}; auto& counters = MemoryCounters::getInstance(); EXPECT_EQ(counters.getGpu(), 0); auto ptr = allocator.allocate(size); EXPECT_NE(ptr, nullptr); EXPECT_EQ(counters.getGpu(), size); EXPECT_EQ(counters.getGpuDiff(), size); EXPECT_NO_THROW(allocator.deallocate(ptr, size)); EXPECT_EQ(counters.getGpu(), 0); EXPECT_EQ(counters.getGpuDiff(), -size); EXPECT_EQ(allocator.getMemoryType(), MemoryType::kGPU); streamPtr->synchronize(); CudaAllocatorAsync allocatorCopy = allocator; EXPECT_EQ(allocatorCopy.getCudaStream(), streamPtr); CudaAllocatorAsync allocatorMove = std::move(allocatorCopy); EXPECT_EQ(allocatorMove.getCudaStream(), streamPtr); EXPECT_THROW(allocator.deallocate(ptr, size), std::runtime_error); } namespace { void testBuffer(IBuffer& buffer, std::int32_t typeSize) { auto const size = buffer.getSize(); EXPECT_NE(buffer.data(), nullptr); EXPECT_EQ(buffer.getSizeInBytes(), size * typeSize); EXPECT_EQ(buffer.getCapacity(), size); buffer.resize(size / 2); EXPECT_EQ(buffer.getSize(), size / 2); EXPECT_EQ(buffer.getCapacity(), size); buffer.resize(size * 2); EXPECT_EQ(buffer.getSize(), size * 2); EXPECT_EQ(buffer.getCapacity(), size * 2); buffer.release(); EXPECT_EQ(buffer.getSize(), 0); EXPECT_EQ(buffer.data(), nullptr); buffer.resize(size / 2); EXPECT_EQ(buffer.getCapacity(), size / 2); auto bufferWrapped = IBuffer::wrap(buffer.data(), buffer.getDataType(), buffer.getSize(), buffer.getCapacity()); EXPECT_EQ(bufferWrapped->data(), buffer.data()); EXPECT_EQ(bufferWrapped->getSize(), buffer.getSize()); EXPECT_EQ(bufferWrapped->getCapacity(), buffer.getCapacity()); EXPECT_EQ(bufferWrapped->getDataType(), buffer.getDataType()); EXPECT_EQ(bufferWrapped->getMemoryType(), buffer.getMemoryType()); EXPECT_NO_THROW(bufferWrapped->resize(buffer.getCapacity() / 2)); EXPECT_THROW(bufferWrapped->resize(buffer.getCapacity() * 2), std::bad_alloc); auto tensorWrapped = ITensor::wrap(buffer.data(), buffer.getDataType(), ITensor::makeShape({static_cast(buffer.getSize())}), buffer.getCapacity()); EXPECT_EQ(tensorWrapped->getSize(), buffer.getSize()); EXPECT_EQ(tensorWrapped->getCapacity(), buffer.getCapacity()); EXPECT_EQ(tensorWrapped->getDataType(), buffer.getDataType()); EXPECT_EQ(tensorWrapped->getMemoryType(), buffer.getMemoryType()); EXPECT_NO_THROW(tensorWrapped->reshape(ITensor::makeShape({static_cast(buffer.getCapacity()) / 2}))); EXPECT_THROW( tensorWrapped->reshape(ITensor::makeShape({static_cast(buffer.getCapacity()) * 2})), std::bad_alloc); } } // namespace TEST_F(TllmBuffersTest, DeviceBuffer) { auto streamPtr = std::make_shared(); auto constexpr size = 1024; CudaAllocatorAsync allocator{streamPtr}; { DeviceBuffer buffer{size, nvinfer1::DataType::kFLOAT, allocator}; testBuffer(buffer, sizeof(float)); } streamPtr->synchronize(); static_assert(!std::is_copy_constructible::value); static_assert(!std::is_copy_assignable::value); } TEST_F(TllmBuffersTest, DeviceTensor) { auto streamPtr = std::make_shared(); nvinfer1::Dims constexpr dims{3, 16, 8, 4}; CudaAllocatorAsync allocator{streamPtr}; { DeviceTensor tensor{dims, nvinfer1::DataType::kFLOAT, allocator}; EXPECT_EQ(tensor.getSize(), ITensor::volume(dims)); testBuffer(tensor, sizeof(float)); EXPECT_EQ(tensor.getSize(), ITensor::volume(tensor.getShape())); } streamPtr->synchronize(); static_assert(!std::is_copy_constructible::value); static_assert(!std::is_copy_assignable::value); } TEST_F(TllmBuffersTest, BufferSlice) { auto constexpr size = 1024; HostAllocator allocator{}; auto constexpr dataType = nvinfer1::DataType::kFLOAT; auto buffer = std::make_shared(size, dataType, allocator); auto offset = size / 8; auto slice = IBuffer::slice(buffer, offset); auto const sizeSlice = size - offset; EXPECT_EQ(slice->getSize(), sizeSlice); EXPECT_EQ(slice->getCapacity(), sizeSlice); EXPECT_EQ(static_cast(slice->data()) - static_cast(buffer->data()), offset * BufferDataType(dataType).getSize()); EXPECT_NO_THROW(slice->resize(sizeSlice)); EXPECT_NO_THROW(slice->resize(sizeSlice / 2)); EXPECT_THROW(slice->resize(sizeSlice * 2), std::runtime_error); EXPECT_NO_THROW(slice->release()); EXPECT_EQ(slice->data(), nullptr); std::shared_ptr constBuffer{buffer}; auto constSlice = IBuffer::slice(constBuffer, offset); EXPECT_EQ(constSlice->getSize(), sizeSlice); auto uniqueSlice = IBuffer::slice(std::move(constSlice), 1); EXPECT_EQ(uniqueSlice->getSize(), sizeSlice - 1); } TEST_F(TllmBuffersTest, TensorSlice) { auto dims = ITensor::makeShape({16, 8, 4}); HostAllocator allocator{}; auto constexpr dataType = nvinfer1::DataType::kFLOAT; auto tensor = std::make_shared(dims, dataType, allocator); auto offset = dims.d[0] / 4; auto slice = ITensor::slice(tensor, offset); auto const sizeSlice = 3 * tensor->getSize() / 4; EXPECT_EQ(slice->getShape().d[0], dims.d[0] - offset); EXPECT_EQ(slice->getSize(), sizeSlice); EXPECT_EQ(slice->getCapacity(), sizeSlice); EXPECT_EQ(static_cast(slice->data()) - static_cast(tensor->data()), offset * ITensor::volume(dims) / dims.d[0] * BufferDataType(dataType).getSize()); auto dimsNew = ITensor::makeShape({12, 32}); EXPECT_EQ(ITensor::volume(dimsNew), sizeSlice); EXPECT_NO_THROW(slice->reshape(dimsNew)); EXPECT_EQ(slice->getShape().d[1], dimsNew.d[1]); dimsNew.d[0] = 6; EXPECT_LT(ITensor::volume(dimsNew), sizeSlice); EXPECT_NO_THROW(slice->reshape(dimsNew)); EXPECT_EQ(slice->getShape().d[0], dimsNew.d[0]); dimsNew.d[0] = 16; EXPECT_GT(ITensor::volume(dimsNew), sizeSlice); EXPECT_THROW(slice->reshape(dimsNew), std::runtime_error); EXPECT_NO_THROW(slice->resize(sizeSlice)); EXPECT_NO_THROW(slice->resize(sizeSlice / 2)); EXPECT_EQ(slice->getShape().d[0], sizeSlice / 2); EXPECT_THROW(slice->resize(sizeSlice * 2), std::runtime_error); EXPECT_NO_THROW(slice->release()); EXPECT_EQ(slice->data(), nullptr); EXPECT_NE(tensor->data(), nullptr); std::shared_ptr constTensor{tensor}; auto constSlice = ITensor::slice(constTensor, offset); EXPECT_EQ(constSlice->getShape().d[0], dims.d[0] - offset); auto uniqueSlice = ITensor::slice(std::move(constSlice), 1); EXPECT_EQ(uniqueSlice->getShape().d[0], dims.d[0] - offset - 1); } TEST_F(TllmBuffersTest, TensorSqueeze) { auto dims = ITensor::makeShape({16, 1, 4}); HostAllocator allocator{}; auto constexpr dataType = nvinfer1::DataType::kFLOAT; auto tensor = std::make_shared(dims, dataType, allocator); auto squeezeDim = 0; EXPECT_THROW(tensor->squeeze(squeezeDim), std::runtime_error); squeezeDim = 1; auto squeezed = ITensor::view(tensor, ITensor::squeeze(dims, squeezeDim)); EXPECT_EQ(squeezed->getSize(), tensor->getSize()); EXPECT_EQ(squeezed->getShape().nbDims, tensor->getShape().nbDims - 1); EXPECT_EQ(squeezed->getShape().d[0], tensor->getShape().d[0]); EXPECT_EQ(squeezed->getShape().d[1], tensor->getShape().d[2]); EXPECT_NO_THROW(squeezed->release()); EXPECT_EQ(squeezed->data(), nullptr); EXPECT_NE(tensor->data(), nullptr); } TEST_F(TllmBuffersTest, TensorView) { auto const dims = ITensor::makeShape({16, 1, 4}); HostAllocator allocator{}; auto constexpr dataType = nvinfer1::DataType::kFLOAT; auto tensor = std::make_shared(dims, dataType, allocator); auto const viewDims = ITensor::makeShape({16, 1, 2}); auto view = ITensor::view(tensor, viewDims); EXPECT_EQ(view->getSize(), tensor->getSize() / 2); EXPECT_EQ(view->getShape().nbDims, tensor->getShape().nbDims); EXPECT_EQ(view->getShape().d[2], tensor->getShape().d[2] / 2); EXPECT_NO_THROW(view->release()); EXPECT_EQ(view->data(), nullptr); EXPECT_NE(tensor->data(), nullptr); } TEST_F(TllmBuffersTest, BufferOutput) { auto streamPtr = std::make_shared(); CudaAllocatorAsync allocator{streamPtr}; for (std::size_t size : {0, 16}) { DeviceBuffer buffer{size, nvinfer1::DataType::kFLOAT, allocator}; TLLM_CUDA_CHECK(cudaMemsetAsync(buffer.data(), 0, buffer.getSizeInBytes(), streamPtr->get())); streamPtr->synchronize(); std::stringstream ss; ss << buffer; auto str = ss.str(); EXPECT_THAT(str, ::testing::HasSubstr(std::string("shape: (") + std::to_string(size) + ")")); EXPECT_THAT(str, ::testing::HasSubstr(tc::vec2str(std::vector(size, 0)))); } streamPtr->synchronize(); } TEST_F(TllmBuffersTest, TensorOutput) { auto streamPtr = std::make_shared(); nvinfer1::Dims constexpr dims{3, 16, 8, 4}; CudaAllocatorAsync allocator{streamPtr}; for (auto dataType : {nvinfer1::DataType::kFLOAT, nvinfer1::DataType::kHALF, nvinfer1::DataType::kBOOL, nvinfer1::DataType::kINT8, nvinfer1::DataType::kINT32, nvinfer1::DataType::kINT64, nvinfer1::DataType::kUINT8}) { DeviceTensor tensor{dims, dataType, allocator}; TLLM_CUDA_CHECK(cudaMemsetAsync(tensor.data(), 0, tensor.getSizeInBytes(), streamPtr->get())); streamPtr->synchronize(); std::stringstream ss; ss << tensor; auto str = ss.str(); EXPECT_THAT(str, ::testing::HasSubstr(std::string("shape: ") + ITensor::toString(dims))); EXPECT_THAT(str, ::testing::HasSubstr("i=15 j=7: (0, 0, 0, 0)")) << "dataType: " << static_cast(dataType); } streamPtr->synchronize(); } namespace { template void testBufferType() { auto constexpr size = 1024; HostAllocator allocator{}; BufferDataType constexpr dataType{TRTDataType::value}; using limits = std::numeric_limits; static_assert(dataType.isPointer() || dataType.isUnsigned() != limits::is_signed); static_assert(std::is_same_v::type>); IBuffer::SharedPtr buffer{std::make_shared(size, dataType, allocator)}; auto bufferPtr = bufferCast(*buffer); auto constexpr max = limits::max(); bufferPtr[0] = max; EXPECT_EQ(bufferPtr[0], max); auto constexpr min = limits::min(); bufferPtr[size - 1] = min; EXPECT_EQ(bufferPtr[size - 1], min); EXPECT_EQ(buffer->data(size), bufferPtr + size); } } // namespace TEST_F(TllmBuffersTest, ExtendedTypes) { testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); testBufferType(); } TEST_F(TllmBuffersTest, BytesToString) { auto constexpr precision = 2; MemoryCounters::SizeType size; MemoryCounters::DiffType diff; size = (1ul << 10) - 1; EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 B"); size = 1ul << 10; EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 KB"); size = (1ul << 10) + (1ul << 9); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 KB"); size = (1ul << 20) - (1ul << 10); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 KB"); size = 1ul << 20; EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 MB"); size = (1ul << 20) + (1ul << 19); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 MB"); size = (1ul << 30) - (1ul << 20); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 MB"); size = 1ul << 30; EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 GB"); size = (1ul << 30) + (1ul << 29); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 GB"); size = (1ull << 40) - (1ull << 30); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 GB"); size = 1ull << 40; EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 TB"); size = (1ull << 40) + (1ull << 39); EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 TB"); diff = -(1l << 10) + 1; EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 B"); diff = -(1l << 10); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 KB"); diff = -(1l << 10) - (1l << 9); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 KB"); diff = -(1l << 20) + (1l << 10); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 KB"); diff = -(1l << 20); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 MB"); diff = -(1l << 20) - (1l << 19); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 MB"); diff = -(1l << 30) + (1l << 20); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 MB"); diff = -(1l << 30); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 GB"); diff = -(1l << 30) - (1l << 29); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 GB"); diff = -(1ll << 40) + (1ll << 30); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 GB"); diff = -(1ll << 40); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 TB"); diff = -(1ll << 40) - (1ll << 39); EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 TB"); }