# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner from transformers.models.llama.modeling_llama import LlamaRMSNorm import tensorrt_llm from tensorrt_llm import Parameter, Tensor from tensorrt_llm.quantization.functional import smooth_quant_rms_norm class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([('float16', False), ('float16', True), ('float32', False), ('float32', True)]) def test_smooth_quant_rms_norm_plugin(self, dtype, dynamic_act_scaling): test_shape = [2, 5, 10, 10] x_data = torch.randn( *test_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) m = LlamaRMSNorm(test_shape[-1]) # LlamaRMSNorm only supports last dim scale_data = torch.randint(2, 32, (1, ), dtype=torch.float32) with torch.no_grad(): def cast_to_int8_with_sat(tensor): return tensor.round().clip(-128, 127).to(dtype=torch.int8) # pytorch run with torch.no_grad(): ref = m(x_data).to(dtype=torch.float32) if dynamic_act_scaling: abs_max_f, _ = ref.abs().max(dim=-1, keepdim=True) dynamic_scale = abs_max_f / 127.0 ref_quantized = cast_to_int8_with_sat(ref * (127.0 / abs_max_f)) else: ref_quantized = cast_to_int8_with_sat(ref * scale_data) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() net.plugin_config.set_rmsnorm_quantization_plugin(dtype) with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = smooth_quant_rms_norm( x, test_shape[-1], weight=tensorrt_llm.constant(m.weight.detach().cpu().numpy()), scale=Parameter(scale_data.cpu().numpy()).value, eps=m.variance_epsilon, dynamic_act_scaling=dynamic_act_scaling) if dynamic_act_scaling: output, dynamic_scales = output dynamic_scales = dynamic_scales.trt_tensor dynamic_scales.name = 'dynamic_scales' network.mark_output(dynamic_scales) dynamic_scales.dtype = tensorrt_llm.str_dtype_to_trt('float32') output = output.trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt('int8') # trt run build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(int8=True, fp16=(dtype == 'float16'), precision_constraints="obey")) assert build_engine is not None, "Build engine failed" with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data.cpu().numpy()}) # compare diff of quantized output # Set absolute tolerance to 1 to mitigate some rounding error np.testing.assert_allclose(ref_quantized.cpu().numpy(), outputs['output'], atol=1, rtol=0) # compare diff of dynamic activation scales if dynamic_act_scaling: np.testing.assert_allclose(dynamic_scale.cpu().numpy(), outputs['dynamic_scales'], atol=1e-2) def test_sq_rms_norm_no_plugin(self): # Create builder builder = tensorrt_llm.Builder() # Create empty network net = builder.create_network() with tensorrt_llm.net_guard(net): tensorrt_llm.default_trtnet() # Get output tensor for SQ gemm with self.assertRaisesRegex( TypeError, "Smooth Quant Rms Norm is only supported with plugin"): smooth_quant_rms_norm(None, 0, None, None, None, 0)