/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/gptJsonConfig.h" #include "gptModelConfig.h" #include "loraManager.h" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/common/stringUtils.h" #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; namespace { using Json = typename nlohmann::json::basic_json; template FieldType parseJsonFieldOr(Json const& json, std::string_view name, FieldType defaultValue) { auto value = defaultValue; try { value = json.at(name).template get(); } catch (nlohmann::json::out_of_range& e) { TLLM_LOG_WARNING("Parameter %s cannot be read from json:", std::string(name).c_str()); TLLM_LOG_WARNING(e.what()); } return value; } template std::optional parseJsonFieldOptional(Json const& json, std::string_view name) { std::optional value = std::nullopt; try { value = json.at(name).template get(); } catch (const nlohmann::json::out_of_range& e) { TLLM_LOG_WARNING(e.what()); TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str()); } catch (const nlohmann::json::type_error& e) { TLLM_LOG_WARNING(e.what()); TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str()); } return value; } template GptJsonConfig parseJson(InputType&& i) { auto constexpr allowExceptions = true; auto constexpr ingoreComments = true; auto const json = nlohmann::json::parse(i, nullptr, allowExceptions, ingoreComments); auto const engineVersion = parseJsonFieldOr(json, "version", std::string("none")); auto const engineVersionNone = engineVersion == std::string("none"); if (engineVersionNone) { TLLM_LOG_INFO("No engine version found in the config file, assuming engine(s) built by old builder API."); } else { TLLM_LOG_INFO("Engine version %s found in the config file, assuming engine(s) built by new builder API.", engineVersion.c_str()); } auto const& builderConfig = engineVersionNone ? json.at("builder_config") : json.at("build_config"); auto const name = engineVersionNone ? builderConfig.at("name").template get() : json.at("pretrained_config").at("architecture").template get(); auto const tensorParallelism = engineVersionNone ? builderConfig.at("tensor_parallel").template get() : json.at("pretrained_config").at("mapping").at("tp_size").template get(); auto const pipelineParallelism = engineVersionNone ? parseJsonFieldOr(builderConfig, "pipeline_parallel", 1) : parseJsonFieldOr(json.at("pretrained_config").at("mapping"), "pp_size", 1); auto const precision = engineVersionNone ? builderConfig.at("precision").template get() : json.at("pretrained_config").at("dtype").template get(); auto dataType = nvinfer1::DataType::kFLOAT; if (!precision.compare("float32")) dataType = nvinfer1::DataType::kFLOAT; else if (!precision.compare("float16")) dataType = nvinfer1::DataType::kHALF; else if (!precision.compare("bfloat16")) dataType = nvinfer1::DataType::kBF16; else TLLM_CHECK_WITH_INFO(false, tc::fmtstr("Model data type '%s' not supported", precision.c_str())); auto modelConfig = [&engineVersionNone, &json, &builderConfig, &tensorParallelism, &dataType]() { if (engineVersionNone) { auto const vocabSize = builderConfig.at("vocab_size").template get(); auto const numLayers = builderConfig.at("num_layers").template get(); auto const numHeads = builderConfig.at("num_heads").template get() / tensorParallelism; auto const hiddenSize = builderConfig.at("hidden_size").template get() / tensorParallelism; auto modelConfig = GptModelConfig{vocabSize, numLayers, numHeads, hiddenSize, dataType}; auto const sizePerHead = parseJsonFieldOr(builderConfig, "head_size", hiddenSize / numHeads); modelConfig.setSizePerHead(sizePerHead); // TODO: // Code crashes when numKvHeads <= 0. Clamping downwards to 1 prevents that, make sure this is best fix. auto const numKvHeads = std::max( parseJsonFieldOr(builderConfig, "num_kv_heads", numHeads * tensorParallelism) / tensorParallelism, 1); modelConfig.setNbKvHeads(numKvHeads); return modelConfig; } else { auto const& pretrainedConfig = json.at("pretrained_config"); auto const vocabSize = pretrainedConfig.at("vocab_size").template get(); auto const numLayers = pretrainedConfig.at("num_hidden_layers").template get(); auto const numHeads = pretrainedConfig.at("num_attention_heads").template get() / tensorParallelism; auto const hiddenSize = pretrainedConfig.at("hidden_size").template get() / tensorParallelism; auto modelConfig = GptModelConfig{vocabSize, numLayers, numHeads, hiddenSize, dataType}; auto const sizePerHead = parseJsonFieldOr(pretrainedConfig, "head_size", hiddenSize / numHeads); modelConfig.setSizePerHead(sizePerHead); // TODO: // Code crashes when numKvHeads <= 0. Clamping downwards to 1 prevents that, make sure this is best fix. auto const numKvHeads = std::max(pretrainedConfig.at("num_key_value_heads").template get() / tensorParallelism, 1); modelConfig.setNbKvHeads(numKvHeads); return modelConfig; } }(); auto const maxBatchSize = parseJsonFieldOr(builderConfig, "max_batch_size", 0); auto const maxBeamWidth = parseJsonFieldOr(builderConfig, "max_beam_width", 0); auto const maxInputLen = parseJsonFieldOr(builderConfig, "max_input_len", 0); auto const maxSequenceLen = maxInputLen + parseJsonFieldOr(builderConfig, "max_output_len", 0); auto const maxDraftLen = parseJsonFieldOr(builderConfig, "max_draft_len", 0); auto const maxNumTokens = parseJsonFieldOptional(builderConfig, "max_num_tokens"); auto const maxPromptEmbeddingTableSize = parseJsonFieldOr(builderConfig, "max_prompt_embedding_table_size", 0); auto const computeContextLogits = parseJsonFieldOr(builderConfig, "gather_context_logits", false); auto const computeGenerationLogits = parseJsonFieldOr(builderConfig, "gather_generation_logits", false); modelConfig.setMaxBatchSize(maxBatchSize); modelConfig.setMaxBeamWidth(maxBeamWidth); modelConfig.setMaxInputLen(maxInputLen); modelConfig.setMaxSequenceLen(maxSequenceLen); modelConfig.setMaxNumTokens(maxNumTokens); modelConfig.setMaxDraftLen(maxDraftLen); modelConfig.setMaxPromptEmbeddingTableSize(maxPromptEmbeddingTableSize); modelConfig.computeContextLogits(computeContextLogits); modelConfig.computeGenerationLogits(computeGenerationLogits); auto const& pluginConfig = engineVersionNone ? json.at("plugin_config") : builderConfig.at("plugin_config"); auto const useGptAttentionPlugin = !pluginConfig.at("gpt_attention_plugin").is_null(); auto const removeInputPadding = pluginConfig.at("remove_input_padding").template get(); auto const pagedKvCache = pluginConfig.at("paged_kv_cache"); auto const tokensPerBlock = pluginConfig.at("tokens_per_block"); auto const useCustomAllReduce = pluginConfig.at("use_custom_all_reduce").template get(); auto const useContextFMHAForGeneration = pluginConfig.at("use_context_fmha_for_generation").template get(); modelConfig.useGptAttentionPlugin(useGptAttentionPlugin); modelConfig.usePackedInput(removeInputPadding); modelConfig.usePagedKvCache(pagedKvCache); modelConfig.setTokensPerBlock(tokensPerBlock); modelConfig.useCustomAllReduce(useCustomAllReduce); modelConfig.setUseContextFMHAForGeneration(useContextFMHAForGeneration); if (engineVersionNone) { auto const pagedContextFMHA = pluginConfig.at("use_paged_context_fmha").template get(); modelConfig.setPagedContextFMHA(pagedContextFMHA); } if (engineVersionNone) { auto const mlpHiddenSize = parseJsonFieldOr(builderConfig, "mlp_hidden_size", SizeType{0}) / tensorParallelism; modelConfig.setMlpHiddenSize(mlpHiddenSize); auto useLoraPlugin = !pluginConfig.at("lora_plugin").is_null(); if (useLoraPlugin) { auto const loraTargetModules = parseJsonFieldOr(builderConfig, "lora_target_modules", std::vector{}); modelConfig.setLoraModules(LoraModule::createLoraModules(loraTargetModules, modelConfig.getHiddenSize(), mlpHiddenSize, modelConfig.getNbHeads(), modelConfig.getNbKvHeads(), modelConfig.getSizePerHead(), tensorParallelism)); if (modelConfig.getLoraModules().empty()) { TLLM_LOG_WARNING("lora_plugin enabled, but no lora module enabled: setting useLoraPlugin to false"); useLoraPlugin = false; } } modelConfig.useLoraPlugin(useLoraPlugin); } if (engineVersionNone) { auto const quantMode = tc::QuantMode(parseJsonFieldOr(builderConfig, "quant_mode", tc::QuantMode::none().value())); modelConfig.setQuantMode(quantMode); } else { auto const& quantization = json.at("pretrained_config").at("quantization"); auto quantAlgo = parseJsonFieldOptional(quantization, "quant_algo"); auto kvCacheQuantAlgo = parseJsonFieldOptional(quantization, "kv_cache_quant_algo"); auto const quantMode = tc::QuantMode::fromQuantAlgo(quantAlgo, kvCacheQuantAlgo); modelConfig.setQuantMode(quantMode); } if (engineVersionNone) { if (name == std::string("chatglm_6b") || name == std::string("glm_10b")) { modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm); // kGlm is only for ChatGLM-6B and GLM-10B } } else { if (name == "ChatGLMForCausalLM") { auto const& pretrainedConfig = json.at("pretrained_config"); auto const chatglmVersion = pretrainedConfig.at("chatglm_version").template get(); if (chatglmVersion == "glm" || chatglmVersion == "chatglm") { modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm); // kGlm is only for ChatGLM-6B and GLM-10B } } } return GptJsonConfig{name, engineVersion, precision, tensorParallelism, pipelineParallelism, modelConfig}; } } // namespace std::string GptJsonConfig::engineFilename(WorldConfig const& worldConfig, std::string const& model) const { TLLM_CHECK_WITH_INFO(getTensorParallelism() == worldConfig.getTensorParallelism(), "tensor parallelism mismatch"); TLLM_CHECK_WITH_INFO( getPipelineParallelism() == worldConfig.getPipelineParallelism(), "pipeline parallelism mismatch"); auto pp = worldConfig.isPipelineParallel() ? "_pp" + std::to_string(worldConfig.getPipelineParallelism()) : ""; if (getVersion() == std::string("none")) { return model + "_" + getPrecision() + "_tp" + std::to_string(worldConfig.getTensorParallelism()) + pp + "_rank" + std::to_string(worldConfig.getRank()) + ".engine"; } else { return "rank" + std::to_string(worldConfig.getRank()) + ".engine"; } } GptJsonConfig GptJsonConfig::parse(std::string const& json) { return parseJson(json); } GptJsonConfig GptJsonConfig::parse(std::istream& json) { return parseJson(json); } GptJsonConfig GptJsonConfig::parse(std::filesystem::path const& path) { TLLM_CHECK_WITH_INFO(std::filesystem::exists(path), std::string("File does not exist: ") + path.string()); std::ifstream json(path); return parse(json); }