# Multi-Modal This document shows how to run multimodal pipelines with TensorRT-LLM, e.g. from image+text input modalities to text output. Multimodal models' LLM part has an additional parameter `--max_multimodal_len` compared to LLM-only build commands. Under the hood, `max_multimodal_len` and `max_prompt_embedding_table_size` are effectively the same concept, i.e., prepended/concatenated embeddings (either multimodal feature embeddings or prompt tuning embeddings) to the LLM input embeddings. The multimodal features from the visual encoder of shape `[batch_size, num_visual_features, visual_hidden_dim]` is flattened as `[batch_size * num_visual_features, visual_hidden_dim]` and passed like a prompt embedding table. ## BLIP2-T5 1. Download Huggingface weights and convert original checkpoint to TRT-LLM checkpoint format following example in `examples/enc_dec/README.md`. ```bash export MODEL_NAME=flan-t5-xl git clone https://huggingface.co/google/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} python ../enc_dec/t5/convert.py -i tmp/hf_models/${MODEL_NAME} \ -o tmp/trt_models/${MODEL_NAME} --weight_data_type float32 \ --inference_tensor_para_size 1 ``` 2. Build TRT-LLM engine from TRT-LLM checkpoint ```bash python ../enc_dec/build.py --model_type t5 \ --weight_dir tmp/trt_models/${MODEL_NAME}/tp1 \ --output_dir trt_engines/${MODEL_NAME}/1-gpu \ --engine_name ${MODEL_NAME} \ --remove_input_padding \ --use_bert_attention_plugin \ --use_gpt_attention_plugin \ --use_gemm_plugin \ --dtype bfloat16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_multimodal_len 256 \ # 8 (max_batch_size) * 32 (num_visual_features) --max_encoder_input_len 924 \ # change if LLM text input range is known --max_output_len 100 ``` **NOTE**: `max_multimodal_len = max_batch_size * num_visual_features`, so if you change max_batch_size, max multimodal length **MUST** be changed accordingly. The built T5 engines are located in `./trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1`. 3. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} ``` The built engines are located in `./visual_engines/${MODEL_NAME}`. 4. Assemble everything into BLIP2 pipeline ```bash python run.py \ --blip_encoder \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1 ``` ## BLIP2-OPT OPT pipeline needs few minor changes from T5 pipeline 1. Convert Huggingface weights to TRT-LLM checkpoint format following `examples/opt/README.md`. 2. Use `trtllm-build` command to build TRT-LLM engine for OPT. 3. Add `--decoder-llm` argument to inference script, since OPT is a decoder-only LLM. 4. The full list of commands is as follows: ```bash export MODEL_NAME=opt-2.7b git clone https://huggingface.co/facebook/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} python ../opt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_multimodal_len 256 \ --max_input_len 924 \ --max_output_len 100 python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --blip_encoder \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --decoder_llm ``` 5. INT8/INT4 weight-only quantization for OPT can be enabled using commands as follows (take `INT4` as an example, while `INT8` is the default precision for weight-only quantization): ```bash python ../opt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --use_weight_only \ --weight_only_precision int4 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_multimodal_len 256 \ --max_input_len 924 \ --max_output_len 100 ``` The built OPT engines lie in `trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu`. You should use this directory as `--llm_engine_dir` argument to `run.py` **NOTE:** INT8/INT4 option is not supported for BLIP2-T5, because quantization support has not be added for encoder-decoder models yet. ## LLaVA 1. Download Huggingface model weights. This model has both LLM and visual components unlike BLIP2 example which downloads only LLM components from Huggingface. ```bash export MODEL_NAME="llava-1.5-7b-hf" git clone https://huggingface.co/llava-hf/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Generate TRT-LLM engine for LLaMA following example in `examples/llama/README.md` ```bash python ../llama/build.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_multimodal_len 576 \ # 1 (max_batch_size) * 576 (num_visual_features) --max_input_len 2048 \ --max_output_len 512 ``` 3. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} ``` 4. Add `--decoder-llm` argument to inference script, since LLaMA is a decoder-only LLM. ```bash python run.py \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --decoder_llm ``` ## Nougat 1. Download Huggingface weights ```bash export MODEL_NAME="nougat-base" # or nougat-small git clone https://huggingface.co/facebook/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/enc_dec` Nougat uses mBART architecture but replaces the LLM encoder with a Swin Transformer encoder. To achieve this, we add an extra `--nougat` flag (over mBART example) to `bart/convert.py` and `build.py` in `examples/enc_dec`. ```bash python ../enc_dec/bart/convert.py -i tmp/hf_models/${MODEL_NAME} \ -o tmp/trt_models/${MODEL_NAME} --weight_data_type float32 \ --inference_tensor_para_size 1 --nougat python ../enc_dec/build.py \ --model_type bart \ --weight_dir tmp/trt_models/${MODEL_NAME}/tp1 \ -o trt_engines/${MODEL_NAME}/1-gpu \ --engine_name $MODEL_NAME \ --bert_attention_plugin \ --gpt_attention_plugin \ --use_gemm_plugin \ --dtype bfloat16 \ --max_beam_width 1 \ --max_batch_size 1 \ --nougat \ --max_multimodal_len 588 \ # 1 (max_batch_size) * 588 (num_visual_features) --max_output_len 100 ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1 \ --nougat ```