# This file is vendored from the Triton project. DO NOT EDIT THIS FILE DIRECTLY. # Source: https://github.com/triton-lang/triton/tree/v3.5.1/python/triton_kernels/triton_kernels/topk.py # Triton is licensed under the MIT License. import torch import triton from triton_kernels.topk_details._topk_forward import _topk_forward from triton_kernels.topk_details._topk_backward import _topk_backward from triton_kernels.tensor import Tensor, Bitmatrix from typing import Optional, Union def topk_forward(x, k, apply_softmax=True, dim=1, return_bitmatrix=True, y_indx=None, n_rows=None): if not isinstance(x, Tensor): x_shape = [x.shape[0] if n_rows is None else n_rows, x.shape[1]] x_shape_max = [x.shape[0], x.shape[1]] x = Tensor(x, shape=x_shape, shape_max=x_shape_max) cdiv = lambda a, b: (a + b - 1) // b BLOCK_M = 32 BLOCK_N = 32 BLOCK_S = 128 assert len(x.shape) == 2 assert x.shape_max[-1] < 32768 assert dim == 1 assert return_bitmatrix n_rows, n_cols = x.shape n_rows_max, _ = x.shape_max dev = x.device # scratchpad tensors # NOTE: these are not returned y_vals = torch.empty((n_rows_max, k), dtype=x.dtype, device=dev) if y_indx is not None: use_provided_indx = True else: y_indx = torch.empty((n_rows_max, k), dtype=torch.int16, device=dev) use_provided_indx = False # create bitmatrix in transposed memory layout: n_cols_pad = cdiv(n_cols, BLOCK_N) * BLOCK_N n_cols_words = n_cols_pad // 32 bitmatrix = torch.empty((n_cols_words, cdiv(n_rows_max, 32) * 32), dtype=torch.uint32, device=dev) bitmatrix = torch.transpose(bitmatrix, 0, 1)[:n_rows_max] s_blocks = cdiv(n_cols, BLOCK_S) s_cols = s_blocks * BLOCK_S scratchpad = torch.empty((s_cols, ), dtype=torch.int32, device=dev) pids = max(cdiv(n_rows_max, BLOCK_M), s_blocks) _topk_forward[(pids, )]( x, x.stride(0), # inputs y_vals, y_indx, y_vals.stride(0), use_provided_indx, # output [topk] bitmatrix, bitmatrix.stride(0), bitmatrix.stride(1), # output [bitmatrix] n_rows, n_cols, # shapes scratchpad, BLOCK_S, s_blocks, # thing to memset to zero BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, # tunable parameter APPLY_SOFTMAX=apply_softmax, N_EXPTS_PAD=n_cols_pad, N_EXPTS_ACT=k, # constants ) bitmatrix_shape = [n_rows, n_cols_words * 32] bitmatrix_shape_max = [n_rows_max, None] bitmatrix = Bitmatrix(bitmatrix, shape=bitmatrix_shape, shape_max=bitmatrix_shape_max, scratchpad=scratchpad) return y_vals, y_indx, bitmatrix def topk_backward(x, y_indx, dy_vals, k, n_rows, apply_softmax): assert dy_vals.shape[-1] == k n_expts_pad = triton.next_power_of_2(x.shape[-1]) dx = torch.empty_like(x) _topk_backward[(dy_vals.shape[0], )]( y_indx, y_indx.stride(0), dy_vals, dy_vals.stride(0), x, x.stride(0), # inputs dx, # outputs dx.stride(0), x.shape[0], n_rows, x.shape[-1], APPLY_SOFTMAX=apply_softmax, N_EXPTS_ACT=k, N_EXPTS_PAD=n_expts_pad) return dx class TopK(torch.autograd.Function): @staticmethod def forward(ctx, x, k, apply_softmax, dim, return_bitmatrix, y_indx, n_rows): y_vals, y_indx, bitmatrix = topk_forward(x, k, apply_softmax, dim, return_bitmatrix, y_indx, n_rows) ctx.save_for_backward(x, y_indx) ctx.apply_softmax = apply_softmax ctx.k = k ctx.n_rows = n_rows return y_vals, y_indx, bitmatrix @staticmethod def backward(ctx, dy_vals, _0, _1): x, y_indx = ctx.saved_tensors dx = topk_backward(x, y_indx, dy_vals, ctx.k, ctx.n_rows, ctx.apply_softmax) return dx, None, None, None, None, None, None def topk( x: Union[Tensor, torch.Tensor], k: int, apply_softmax: bool = True, dim: int = 1, return_bitmatrix: bool = True, y_indx: Optional[torch.Tensor] = None, n_rows: Optional[int] = None, ): """ Computes the top-k values and indices along a specified dimension of a tensor. Note that the input can be either a `Tensor` or a `torch.Tensor`, but the output will always be a `torch.Tensor`. Parameters ---------- x : Union[triton_kernels.Tensor, torch.Tensor] Input tensor of shape (n_tokens, n_expts). k : int Number of top elements to retrieve. apply_softmax : bool, default True Whether to apply softmax to the input tensor before computing top-k. dim : int, default 1 Dimension along which to compute top-k. return_bitmatrix : bool, default True A bitmatrix of shape (n_tokens, cdiv(n_expts, 32)). Each bit on [t, b] indicates whether the b-th expert was selected for the t-th token. y_indx : torch.Tensor, optional Pre-allocated tensor for storing indices of top-k elements with shape (n_tokens, k). If provided, we skip the computation of top-k indices and use this tensor instead. n_rows : int, optional Number of rows to apply top-k on. If None, we consider all rows in `x`. Returns ------- (expt_scal, expt_indx, bitmatrix) : Tuple[torch.Tensor, torch.Tensor, Bitmatrix] """ ret = TopK.apply(x, k, apply_softmax, dim, return_bitmatrix, y_indx, n_rows) return ret