import torch import triton # type: ignore[import] import triton.language as tl # type: ignore[import] @triton.jit def scale_and_clamp(x, scale, dtype): if dtype == tl.float8e4nv: clamp_min = -448.0 clamp_max = 448.0 elif dtype == tl.float8e5: clamp_min = -57344.0 clamp_max = 57344.0 elif dtype == tl.float16: clamp_min = -65504.0 clamp_max = 65504.0 elif dtype == tl.bfloat16: clamp_min = -3.3895313892515355e38 clamp_max = 3.3895313892515355e38 else: tl.static_assert(False, f"Unsupported dtype: {dtype}") return tl.clamp(x.to(tl.float32) / scale, clamp_min, clamp_max).to(dtype) @triton.jit def silu_and_mul_kernel(o_ptr, o_stride, o_scale_ptr, x_ptr, x_stride, d, BLOCK_SIZE: tl.constexpr, HAS_O_SCALE: tl.constexpr) -> None: i = tl.program_id(axis=0).to(tl.int64) j = tl.program_id(axis=1) o_row_ptr = o_ptr + o_stride * i x_row_ptr = x_ptr + x_stride * i offsets = j * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < d a = tl.load(x_row_ptr + offsets, mask=mask).to(tl.float32) b = tl.load(x_row_ptr + offsets + d, mask=mask).to(tl.float32) result = tl.sigmoid(a) * a * b if HAS_O_SCALE: o_scale = tl.load(o_scale_ptr) result = scale_and_clamp(result, o_scale, o_ptr.dtype.element_ty) tl.store(o_row_ptr + offsets, result, mask=mask) def swiglu(x, quant_scale: torch.Tensor = None, quant_type=None): if quant_scale is not None: assert quant_type is not None return torch.ops.trtllm.silu_and_mul( x, scale=quant_scale, dtype=quant_type, ) return torch.ops.trtllm.silu_and_mul(x)