# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module test_commandr test commandr examples.""" import os import pytest from defs.common import (convert_weights, generate_summary_cmd, venv_check_call, venv_mpi_check_call) from defs.conftest import (get_gpu_device_list, get_sm_version, skip_post_blackwell) from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @pytest.mark.skip_less_device_memory(80000) @skip_post_blackwell @pytest.mark.parametrize("use_weight_only", [True, False], ids=["enable_weight_only", "disable_weight_only"]) def test_llm_commandr_v01_single_gpu_summary(commandr_example_root, llm_commandr_v01_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, use_weight_only): "Build & run commandr_v01 on single gpu." if "GH200" in get_gpu_device_list()[0] and not use_weight_only: pytest.skip("OOM on GH200. https://nvbugs/5250460") print("Converting checkpoint...") dtype = 'float16' model_name = os.path.basename(llm_commandr_v01_model_root) ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=commandr_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_commandr_v01_model_root, data_type=dtype, use_weight_only=use_weight_only) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={8}", f"--max_input_len={924}", f"--max_seq_len={1024}", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) summary_cmd = [ f"{commandr_example_root}/../../../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{llm_commandr_v01_model_root}", "--data_type", "fp16", "--check_accuracy", f"--engine_dir={engine_dir}", "--tensorrt_llm_rouge1_threshold=12", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}", ] venv_check_call(llm_venv, summary_cmd) @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.skip_less_host_memory(1000000) @pytest.mark.parametrize("use_weight_only", [pytest.param(True, marks=skip_post_blackwell), False], ids=["enable_weight_only", "disable_weight_only"]) def test_llm_commandr_plus_4gpus_summary(commandr_example_root, llm_commandr_plus_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, use_weight_only, timeout_manager): "Build & run Command-R+ with smoothquant on 4 gpus." dtype = 'float16' tp_size = 4 model_name = os.path.basename(llm_commandr_plus_model_root) # Convert checkpoint with timeout management print("Converting checkpoint...") with timeout_manager.timed_operation("convert"): ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=commandr_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_commandr_plus_model_root, data_type=dtype, tp_size=tp_size, gpus=tp_size, use_weight_only=use_weight_only, timeout=timeout_manager.remaining_timeout) # Build engines with timeout management print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={8}", f"--max_input_len={924}", f"--max_seq_len={1024}", f"--max_beam_width={4}", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", ] run_cmd = [ f"{commandr_example_root}/../../../run.py", f"--max_output_len={50}", f"--tokenizer_dir={llm_commandr_plus_model_root}", f"--engine_dir={engine_dir}", ] with timeout_manager.timed_operation("build"): check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env, timeout=timeout_manager.remaining_timeout) # Run engines with timeout management print("Running engines...") with timeout_manager.timed_operation("run"): venv_mpi_check_call( llm_venv, ["mpirun", "-n", str(tp_size), "--allow-run-as-root"], run_cmd, timeout=timeout_manager.remaining_timeout) # Run summary with timeout management print("Running summary...") summary_cmd = generate_summary_cmd( commandr_example_root, hf_model_dir=llm_commandr_plus_model_root, data_type="fp16", engine_dir=engine_dir, dataset_dir=llm_datasets_root, rouge_dir=llm_rouge_root) with timeout_manager.timed_operation("summary"): venv_mpi_check_call( llm_venv, ["mpirun", "-n", str(tp_size), "--allow-run-as-root"], summary_cmd, timeout=timeout_manager.remaining_timeout)