# Baichuan This document shows how to build and run a Baichuan models (including `v1_7b`/`v1_13b`/`v2_7b`/`v2_13b`) in TensorRT-LLM on both single GPU and single node multi-GPU. ## Overview The TensorRT-LLM Baichuan implementation can be found in [tensorrt_llm/models/baichuan/model.py](../../tensorrt_llm/models/baichuan/model.py). The TensorRT-LLM Baichuan example code is located in [`examples/baichuan`](./). There are three main files in that folder:: * [`build.py`](./build.py) to build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run the Baichuan model, * [`run.py`](./run.py) to run the inference on an input text, * [`summarize.py`](./summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset using the model. These scripts accept an argument named model_version, whose value should be `v1_7b`/`v1_13b`/`v2_7b`/`v2_13b` and the default value is `v1_13b`. ## Support Matrix * FP16 * BF16 * INT4 & INT8 Weight-Only * INT8 KV CACHE * INT8 Smooth Quant ## Usage The TensorRT-LLM Baichuan example code locates at [examples/baichuan](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference. ### Build TensorRT engine(s) Need to specify the HF Baichuan checkpoint path. For `v1_13b`, you should use whether [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat) or [baichuan-inc/Baichuan-13B-Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base). For `v2_13b`, you should use whether [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) or [baichuan-inc/Baichuan2-13B-Base](https://huggingface.co/baichuan-inc/Baichuan2-13B-Base). More Baichuan models could be found on [baichuan-inc](https://huggingface.co/baichuan-inc). TensorRT-LLM Baichuan builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights. Normally `build.py` only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallelly building to make the engine building process faster by adding `--parallel_build` argument. Please note that currently `parallel_build` feature only supports single node. Here're some examples that take `v1_13b` as example: ```bash # Build a single-GPU float16 engine from HF weights. # Enable the special TensorRT-LLM GPT Attention plugin (--use_gpt_attention_plugin) to increase runtime performance. # 7B models should always add --use_gpt_attention_plugin since RoPE is only supported with GPTAttention plugin now. # Try use_gemm_plugin to prevent accuracy issue. # Build the Baichuan V1 13B model using a single GPU and FP16. python build.py --model_version v1_13b \ --model_dir baichuan-inc/Baichuan-13B-Chat \ --dtype float16 \ --use_gemm_plugin float16 \ --use_gpt_attention_plugin float16 \ --output_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/1-gpu/ # Build the Baichuan V1 13B model using a single GPU and BF16. python build.py --model_version v1_13b \ --model_dir baichuan-inc/Baichuan-13B-Chat \ --dtype bfloat16 \ --use_gemm_plugin bfloat16 \ --use_gpt_attention_plugin bfloat16 \ --output_dir ./tmp/baichuan_v1_13b/trt_engines/bf16/1-gpu/ # Build the Baichuan V1 13B model using a single GPU and apply INT8 weight-only quantization. python build.py --model_version v1_13b \ --model_dir baichuan-inc/Baichuan-13B-Chat \ --dtype float16 \ --use_gemm_plugin float16 \ --use_gpt_attention_plugin float16 \ --use_weight_only \ --output_dir ./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/ # Build the Baichuan V1 13B model using a single GPU and apply INT4 weight-only quantization. python build.py --model_version v1_13b \ --model_dir baichuan-inc/Baichuan-13B-Chat \ --dtype float16 \ --use_gemm_plugin float16 \ --use_gpt_attention_plugin float16 \ --use_weight_only \ --weight_only_precision int4 \ --output_dir ./tmp/baichuan_v1_13b/trt_engines/int4_weight_only/1-gpu/ # Build Baichuan V1 13B using 2-way tensor parallelism. python build.py --model_version v1_13b \ --model_dir baichuan-inc/Baichuan-13B-Chat \ --dtype float16 \ --use_gemm_plugin float16 \ --use_gpt_attention_plugin float16 \ --output_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/2-gpu/ \ --world_size 2 ``` #### INT8 weight only + INT8 KV cache For INT8 KV cache, [`hf_baichuan_convert.py`](./hf_baichuan_convert.py) features a `--calibrate-kv-cache, -kv` option. Setting `-kv` will calibrate the model, and then export the scaling factors needed for INT8 KV cache inference. Example: ```bash python3 hf_baichuan_convert.py -i baichuan-inc/Baichuan-13B-Chat -o ./tmp/baichuan_v1_13b/int8_kv_cache/ --calibrate-kv-cache -t fp16 ``` [`build.py`](./build.py) add new options for the support of INT8 KV cache. `--int8_kv_cache` is the command-line option to enable INT8 KV cache. In addition, it could be combined with INT8 weight-only quantization, as follows: Examples of INT8 weight-only quantization + INT8 KV cache ```bash # Build model with both INT8 weight-only and INT8 KV cache enabled python build.py --model_version v1_13b \ --bin_model_dir=./tmp/baichuan_v1_13b/int8_kv_cache/1-gpu/ \ --dtype float16 \ --use_gpt_attention_plugin float16 \ --use_gemm_plugin float16 \ --output_dir ./tmp/baichuan_v1_13b/trt_engines/int8_kv_cache_weight_only/1-gpu \ --int8_kv_cache \ --use_weight_only ``` #### SmoothQuant The SmoothQuant supports all Baichuan model variants. Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine. Example: ```bash python3 hf_baichuan_convert.py -i baichuan-inc/Baichuan-13B-Chat -o ./tmp/baichuan_v1_13b/sq0.8/ -sq 0.8 --tensor-parallelism 1 --storage-type fp16 ``` [`build.py`](./build.py) add new options for the support of INT8 inference of SmoothQuant models. `--use_smooth_quant` is the starting point of INT8 inference. By default, it will run the model in the _per-tensor_ mode. Then, you can add any combination of `--per-token` and `--per-channel` to get the corresponding behaviors. Examples of build invocations: ```bash # Build model for SmoothQuant in the _per_tensor_ mode. python3 build.py --model_version v1_13b \ --bin_model_dir=./tmp/baichuan_v1_13b/sq0.8/1-gpu/ \ --use_smooth_quant \ --use_gpt_attention_plugin float16 \ # Build model for SmoothQuant in the _per_token_ + _per_channel_ mode python3 build.py --model_version v1_13b \ --bin_model_dir=./tmp/baichuan_v1_13b/sq0.8/1-gpu/ \ --use_smooth_quant \ --use_gpt_attention_plugin float16 \ --per_token \ --per_channel ``` Note we use `--bin_model_dir` instead of `--model_dir` and `--meta_ckpt_dir` since SmoothQuant model needs INT8 weights and various scales from the binary files. ### Run To run a TensorRT-LLM Baichuan model using the engines generated by build.py ```bash # With fp16 inference python run.py --model_version v1_13b \ --max_output_len=50 \ --tokenizer_dir baichuan-inc/Baichuan-13B-Chat \ --engine_dir=./tmp/baichuan_v1_13b/trt_engines/fp16/1-gpu/ # With bf16 inference python run.py --model_version v1_13b \ --max_output_len=50 \ --tokenizer_dir baichuan-inc/Baichuan-13B-Chat \ --engine_dir=./tmp/baichuan_v1_13b/trt_engines/bf16/1-gpu/ # With INT8 weight-only quantization inference python run.py --model_version v1_13b \ --max_output_len=50 \ --tokenizer_dir=baichuan-inc/Baichuan-13B-Chat \ --engine_dir=./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/ # With INT4 weight-only quantization inference python run.py --model_version v1_13b \ --max_output_len=50 \ --tokenizer_dir=baichuan-inc/Baichuan-13B-Chat \ --engine_dir=./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/ # With 2-way tensor parallelism inference mpirun -n 2 --allow-run-as-root \ python run.py --model_version v1_13b \ --max_output_len=50 \ --tokenizer_dir=baichuan-inc/Baichuan-13B-Chat \ --engine_dir=./tmp/baichuan_v1_13b/trt_engines/fp16/2-gpu/ ``` ### Summarization using the Baichuan model ```bash # Run summarization using the Baichuan V1 13B model in FP16. python summarize.py --model_version v1_13b \ --test_trt_llm \ --hf_model_location baichuan-inc/Baichuan-13B-Chat \ --data_type fp16 \ --engine_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/1-gpu/ # Run summarization using the Baichuan V1 13B model quantized to INT8. python summarize.py --model_version v1_13b \ --test_trt_llm \ --hf_model_location baichuan-inc/Baichuan-13B-Chat \ --data_type fp16 \ --engine_dir ./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/ # Run summarization using the Baichuan V1 13B model in FP16 using two GPUs. mpirun -n 2 --allow-run-as-root \ python summarize.py --model_version v1_13b \ --test_trt_llm \ --hf_model_location baichuan-inc/Baichuan-13B-Chat \ --data_type fp16 \ --engine_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/2-gpu/ ``` ### Known Issues * The implementation of the Baichuan-7B model with INT8 Weight-Only and Tensor Parallelism greater than 2 might have accuracy issues. It is under investigation.