# InternLM This document shows how to build and run InternLM 7B / 20B models in TensorRT-LLM on both single GPU, single node multi-GPU and multi-node multi-GPU. ## Overview The TensorRT-LLM InternLM implementation can be found in [tensorrt_llm/models/internlm/model.py](../../tensorrt_llm/models/internlm/model.py). The TensorRT-LLM InternLM example code is located in [`examples/internlm`](./). There are three main files in that folder:: * [`build.py`](./build.py) to build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run the InternLM model, * [`run.py`](./run.py) to run the inference on an input text, * [`summarize.py`](./summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset using the model. ## Support Matrix * FP16 / BF16 * INT8 & INT4 Weight-Only * Smooth Quant * INT8 KV Cache * Tensor Parallel & Pipeline Parallel ## Usage The TensorRT-LLM InternLM example code locates at [examples/internlm](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference. ### Build TensorRT engine(s) TensorRT-LLM InternLM builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights. InternLM has released several checkpoints of different size or capabilities under https://huggingface.co/internlm. Users can pick any one repository and follow instructions to prepare the checkpoint. Below examples use [internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) and [internlm-chat-20b](https://huggingface.co/internlm/internlm-chat-20b) and assume these repositories are cloned or linked under this directory, for example `./internlm-chat-7b/`. Normally `build.py` only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallel building to make the engine building process faster by adding `--parallel_build` argument. Please note that currently `parallel_build` feature only supports single node. Here're some examples: ```bash # Build a single-GPU float16 engine from HF weights. # use_gpt_attention_plugin is necessary in InternLM. # Try use_gemm_plugin to prevent accuracy issue. # It is recommend to use --remove_input_padding along with --use_gpt_attention_plugin for better performance # Build the InternLM 7B model using a single GPU and FP16. python build.py --model_dir ./internlm-chat-7b/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/ # Build the InternLM 7B model using a single GPU and BF16. python build.py --model_dir ./internlm-chat-7b/ \ --dtype bfloat16 \ --remove_input_padding \ --use_gpt_attention_plugin bfloat16 \ --enable_context_fmha \ --use_gemm_plugin bfloat16 \ --output_dir ./internlm-chat-7b/trt_engines/bf16/1-gpu/ # Build the InternLM 7B model using a single GPU and apply INT8 weight-only quantization. python build.py --model_dir ./internlm-chat-7b/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --use_weight_only \ --output_dir ./internlm-chat-7b/trt_engines/weight_only/1-gpu/ # Note: setting `--weight_only_precision int4` to use INT4 weight-only quantization # Build InternLM 7B using 2-way tensor parallelism. python build.py --model_dir ./internlm-chat-7b/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ \ --world_size 2 \ --tp_size 2 \ --parallel_build # Build InternLM 20B using 2-way tensor parallelism and 2-way pipeline parallelism. python build.py --model_dir ./internlm-chat-20b/ \ --dtype bfloat16 \ --remove_input_padding \ --use_gpt_attention_plugin bfloat16 \ --enable_context_fmha \ --use_gemm_plugin bfloat16 \ --output_dir ./internlm-chat-20b/trt_engines/bf16/4-gpu/ \ --world_size 4 \ --tp_size 2 \ --pp_size 2 \ --parallel_build ``` #### INT8 weight only + INT8 KV cache For INT8 KV cache, [`hf_internlm_convert.py`](./hf_internlm_convert.py) features a `--calibrate-kv-cache, -kv` option. Setting `-kv` will calibrate the model, and then export the scaling factors needed for INT8 KV cache inference. Example: ```bash # For 7B models python hf_internlm_convert.py -i ./internlm-chat-7b -o ./internlm-chat-7b/smooth_internlm/int8_kv_cache/ --calibrate-kv-cache -t fp16 # For 20B models python hf_internlm_convert.py -i ./internlm-chat-20b -o ./internlm-chat-20b/smooth_internlm/int8_kv_cache/ --calibrate-kv-cache -t fp16 ``` [`build.py`](./build.py) add new options for the support of INT8 KV cache. `--int8_kv_cache` is the command-line option to enable INT8 KV cache. In addition, it could be combined with INT8 weight-only quantization, as follows: Examples of INT8 weight-only quantization + INT8 KV cache ```bash # Build 7B model with both INT8 weight-only and INT8 KV cache enabled python build.py --ft_model_dir=./internlm-chat-7b/smooth_internlm/int8_kv_cache/1-gpu/ \ --dtype float16 \ --use_gpt_attention_plugin float16 \ --use_gemm_plugin float16 \ --output_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu \ --int8_kv_cache \ --use_weight_only # Build 20B model with both INT8 weight-only and INT8 KV cache enabled python build.py --ft_model_dir=./internlm-chat-20b/smooth_internlm/int8_kv_cache/1-gpu/ \ --dtype float16 \ --use_gpt_attention_plugin float16 \ --use_gemm_plugin float16 \ --output_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu \ --int8_kv_cache \ --use_weight_only ``` Test with `run.py` or `summarize.py`: ```bash python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-20b/ \ --engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-7b \ --data_type fp16 \ --engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-20b \ --data_type fp16 \ --engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu ``` #### SmoothQuant Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine. Example: ```bash # For 7B models python hf_internlm_convert.py -i ./internlm-chat-7b -o ./internlm-chat-7b/smooth_internlm/sq0.5/ -sq 0.5 --tensor-parallelism 1 --storage-type fp16 # For 20B models python hf_internlm_convert.py -i ./internlm-chat-20b -o ./internlm-chat-20b/smooth_internlm/sq0.5/ -sq 0.5 --tensor-parallelism 1 --storage-type fp16 ``` [`build.py`](./build.py) add new options for the support of INT8 inference of SmoothQuant models. `--use_smooth_quant` is the starting point of INT8 inference. By default, it will run the model in the _per-tensor_ mode. Then, you can add any combination of `--per-token` and `--per-channel` to get the corresponding behaviors. Examples of build invocations: ```bash # Build model for SmoothQuant in the _per_tensor_ mode. # 7B model python build.py --ft_model_dir=./internlm-chat-7b/smooth_internlm/sq0.5/1-gpu/ \ --use_smooth_quant \ --output_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu # 20B model python build.py --ft_model_dir=./internlm-chat-20b/smooth_internlm/sq0.5/1-gpu/ \ --use_smooth_quant \ --output_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu # OR build model for SmoothQuant in the _per_token_ + _per_channel_ mode # 7B model python build.py --ft_model_dir=./internlm-chat-7b/smooth_internlm/sq0.5/1-gpu/ \ --use_smooth_quant \ --per_token \ --per_channel \ --output_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu # 20B model python build.py --ft_model_dir=./internlm-chat-20b/smooth_internlm/sq0.5/1-gpu/ \ --use_smooth_quant \ --per_token \ --per_channel \ --output_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu ``` Note we use `--ft_model_dir` instead of `--model_dir` and `--meta_ckpt_dir` since SmoothQuant model needs INT8 weights and various scales from the binary files. Test with `run.py` or `summarize.py`: ```bash python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-20b/ \ --engine_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-7b \ --data_type fp16 \ --engine_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-20b \ --data_type fp16 \ --engine_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu ``` ### Run To run a TensorRT-LLM InternLM model using the engines generated by build.py ```bash # InternLM 7B with fp16 python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir=./internlm-chat-7b/trt_engines/fp16/1-gpu/ # InternLM 7B with bf16 python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir=./internlm-chat-7b/trt_engines/bf16/1-gpu/ # InternLM 7B with int8 weight only quantization python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir=./internlm-chat-7b/trt_engines/weight_only/1-gpu/ # InternLM 7B with fp16 and tensor parallelism mpirun -n 2 --allow-run-as-root \ python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir=./internlm-chat-7b/trt_engines/fp16/2-gpu/ # InternLM 20B with fp16 and tensor parallelism and pipeline parallelism mpirun -n 4 --allow-run-as-root \ python run.py --max_output_len=120 \ --input_text 'Tell me about yourself.' \ --tokenizer_dir ./internlm-chat-7b/ \ --engine_dir=./internlm-chat-7b/trt_engines/bf16/4-gpu/ ``` ### Summarization using the InternLM model ```bash # Run summarization using the InternLM 7B model in FP16. python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-7b/ \ --data_type fp16 \ --engine_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/ # Run summarization using the InternLM 7B model quantized to INT8. python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-7b/ \ --data_type fp16 \ --engine_dir ./internlm-chat-7b/trt_engines/weight_only/1-gpu/ # Run summarization using the InternLM 7B model in FP16 using two GPUs. mpirun -n 2 --allow-run-as-root \ python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-7b/ \ --data_type fp16 \ --engine_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ # Run summarization using the InternLM 20B model in BF16 using 4 GPUs. mpirun -n 4 --allow-run-as-root \ python summarize.py --test_trt_llm --test_hf \ --hf_model_location ./internlm-chat-20b/ \ --data_type bf16 \ --engine_dir ./internlm-chat-20b/trt_engines/bf16/4-gpu/ ```