/* * SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & * AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "smoothQuantGemmPlugin.h" #include "tensorrt_llm/kernels/weightOnlyBatchedGemv/int8SQ.h" #include using namespace nvinfer1; using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels::cutlass_kernels; using tensorrt_llm::plugins::SmoothQuantGemmPluginCreator; using tensorrt_llm::plugins::SmoothQuantGemmPlugin; using tensorrt_llm::plugins::SmoothQuantGemmPluginProfiler; using tensorrt_llm::plugins::read; using tensorrt_llm::plugins::write; static char const* SQ_GEMM_PLUGIN_VERSION{"1"}; static char const* SQ_GEMM_PLUGIN_NAME{"SmoothQuantGemm"}; PluginFieldCollection SmoothQuantGemmPluginCreator::mFC{}; std::vector SmoothQuantGemmPluginCreator::mPluginAttributes; void SmoothQuantGemmPluginProfiler::runTactic(int m, int n, int k, SmoothQuantGemmPluginProfiler::Config const& tactic, char* workspace, cudaStream_t const& stream) { int8_t* aTmp = reinterpret_cast(workspace); int8_t* bTmp = nextWorkspacePtr(aTmp, m * k * sizeof(int8_t)); void* cTmp = reinterpret_cast(nextWorkspacePtr(bTmp, n * k * sizeof(int8_t))); float* alphaRowTmp = reinterpret_cast( nextWorkspacePtr(reinterpret_cast(cTmp), m * n * (mType == nvinfer1::DataType::kFLOAT ? 4 : 2))); float* alphaColTmp = reinterpret_cast(nextWorkspacePtr(reinterpret_cast(alphaRowTmp), m * sizeof(float))); char* workspaceTmp = reinterpret_cast(nextWorkspacePtr(reinterpret_cast(alphaColTmp), n * sizeof(float))); int const wsSize = mRunner->getWorkspaceSize(m, n, k); mRunner->gemm( aTmp, bTmp, mQuantMode, alphaColTmp, alphaRowTmp, cTmp, m, n, k, tactic, workspaceTmp, wsSize, stream); } void SmoothQuantGemmPluginProfiler::computeTmpSize(size_t maxM, size_t n, size_t k) { std::vector workspaces = { maxM * k * sizeof(int8_t), // A n * k * sizeof(int8_t), // B maxM * n * (mType == nvinfer1::DataType::kFLOAT ? 4u : 2u), // C maxM * sizeof(float), // alphaRow n * sizeof(float), // alphaCol mRunner->getWorkspaceSize(maxM, n, k) // workspace }; size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size()); setTmpWorkspaceSizeInBytes(bytes); } std::vector SmoothQuantGemmPluginProfiler::getTactics(int m, int n, int k) const { return mRunner->getConfigs(); } SmoothQuantGemmPlugin::SmoothQuantGemmPlugin( QuantMode quantMode, nvinfer1::DataType type, SmoothQuantGemmPlugin::PluginProfilerPtr const& pluginProfiler) : mQuantMode(quantMode) , mPluginProfiler(pluginProfiler) { init(type); } // Parameterized constructor SmoothQuantGemmPlugin::SmoothQuantGemmPlugin( void const* data, size_t length, SmoothQuantGemmPlugin::PluginProfilerPtr const& pluginProfiler) : mPluginProfiler(pluginProfiler) { char const *d = reinterpret_cast(data), *a = d; nvinfer1::DataType type; unsigned int quantMode; read(d, quantMode); read(d, type); read(d, mDims); mQuantMode = QuantMode(quantMode); init(type); mPluginProfiler->deserialize(d, mDims, mGemmId); TLLM_CHECK_WITH_INFO(d == a + length, "Expected length (%d) != real length (%d). This is often " "caused by using different TensorRT LLM version to build " "engine and run engine.", (int) length, (int) (d - a)); } void SmoothQuantGemmPlugin::init(nvinfer1::DataType type) { mType = type; if (mType == nvinfer1::DataType::kHALF) { m_sqGemmRunner = std::make_shared>(); } else if (mType == nvinfer1::DataType::kFLOAT) { m_sqGemmRunner = std::make_shared>(); } else if (mType == nvinfer1::DataType::kINT32) { m_sqGemmRunner = std::make_shared>(); } #ifdef ENABLE_BF16 else if (mType == nvinfer1::DataType::kBF16) { m_sqGemmRunner = std::make_shared>(); } #endif mPluginProfiler->setQuantMode(mQuantMode); mGemmId = GemmIdCore(mDims.n, mDims.k, mType); } // IPluginV2DynamicExt Methods nvinfer1::IPluginV2DynamicExt* SmoothQuantGemmPlugin::clone() const noexcept { auto* plugin = new SmoothQuantGemmPlugin(*this); return plugin; } nvinfer1::DimsExprs SmoothQuantGemmPlugin::getOutputDimensions( int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept { try { TLLM_CHECK(nbInputs == 4); TLLM_CHECK(outputIndex == 0); int const nbDimsA = inputs[0].nbDims; TLLM_CHECK(nbDimsA >= 2); DimsExprs ret; ret.nbDims = nbDimsA; for (int ii = 0; ii < nbDimsA - 1; ++ii) { ret.d[ii] = inputs[0].d[ii]; } ret.d[nbDimsA - 1] = inputs[1].d[0]; return ret; } catch (std::exception const& e) { caughtError(e); } return DimsExprs{}; } bool SmoothQuantGemmPlugin::supportsFormatCombination( int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept { switch (pos) { case 0: // activation return inOut[pos].type == nvinfer1::DataType::kINT8 && inOut[pos].format == TensorFormat::kLINEAR; case 1: // weights // Weights stored in checkpoint must have int8 type return inOut[pos].type == nvinfer1::DataType::kINT8 && inOut[pos].format == TensorFormat::kLINEAR; case 2: // scales channels case 3: // scales tokens return inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format == TensorFormat::kLINEAR; case 4: // out return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR; default: // Never should be here assert(false); return false; } } void SmoothQuantGemmPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept { auto const minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies()); auto const maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies()); int const maxK = in[0].max.d[in[0].max.nbDims - 1]; int const maxN = in[1].max.d[0]; int const minK = in[0].min.d[in[0].min.nbDims - 1]; int const minN = in[1].min.d[0]; TLLM_CHECK_WITH_INFO(minN == maxN, "Variable out channels is not allowed"); TLLM_CHECK_WITH_INFO(minK == maxK, "Variable in channels is not allowed"); if (!mDims.isInitialized()) { mDims = {minM, maxM, maxN, maxK}; } mGemmId = {maxN, maxK, mType}; m_workspaceMaxSize = m_sqGemmRunner->getWorkspaceSize(maxM, maxN, maxK); } size_t SmoothQuantGemmPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs, nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept { return m_workspaceMaxSize; } int SmoothQuantGemmPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept { // inputs // mat1 [M(*), K] // mat2 [N, K] // scale_tokens [M, 1] if has_per_token_scaling else [1, 1] // scale_channels [1, N] if has_per_channel_scaling else [1, 1] // outputs // mat [M(*), N] int64_t m64 = 1; for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii) { m64 *= inputDesc[0].dims.d[ii]; } int const m = TLLM_INT32_CAST(m64); int const n = TLLM_INT32_CAST(inputDesc[1].dims.d[0]); int const k = TLLM_INT32_CAST(inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]); int const wsSize = m_sqGemmRunner->getWorkspaceSize(m, n, k); if (m <= 4) { tensorrt_llm::kernels::smooth_quant::Params params(reinterpret_cast(inputs[0]), reinterpret_cast(inputs[1]), reinterpret_cast(inputs[2]), reinterpret_cast(inputs[3]), reinterpret_cast(outputs[0]), m, n, k, mQuantMode); if (mType == nvinfer1::DataType::kHALF) { tensorrt_llm::kernels::smooth_quant::int8_sq_launcher(params, stream); } else if (mType == nvinfer1::DataType::kFLOAT) { tensorrt_llm::kernels::smooth_quant::int8_sq_launcher(params, stream); } #ifdef ENABLE_BF16 else if (mType == nvinfer1::DataType::kBF16) { tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<__nv_bfloat16>(params, stream); } #endif else if (mType == nvinfer1::DataType::kINT32) { tensorrt_llm::kernels::smooth_quant::int8_sq_launcher(params, stream); } } else { auto const& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId); TLLM_CHECK_WITH_INFO(bestTactic, "No valid SQ GEMM tactic"); m_sqGemmRunner->gemm(reinterpret_cast(inputs[0]), reinterpret_cast(inputs[1]), mQuantMode, reinterpret_cast(inputs[3]), reinterpret_cast(inputs[2]), reinterpret_cast(outputs[0]), m, n, k, *bestTactic, reinterpret_cast(workspace), wsSize, stream); } return 0; } // IPluginV2Ext Methods nvinfer1::DataType SmoothQuantGemmPlugin::getOutputDataType( int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept { TLLM_CHECK(index == 0); return mType; } // IPluginV2 Methods char const* SmoothQuantGemmPlugin::getPluginType() const noexcept { return SQ_GEMM_PLUGIN_NAME; } char const* SmoothQuantGemmPlugin::getPluginVersion() const noexcept { return SQ_GEMM_PLUGIN_VERSION; } int SmoothQuantGemmPlugin::getNbOutputs() const noexcept { return 1; } int SmoothQuantGemmPlugin::initialize() noexcept { configGemm(); return 0; } void SmoothQuantGemmPlugin::terminate() noexcept {} size_t SmoothQuantGemmPlugin::getSerializationSize() const noexcept { return sizeof(unsigned int) + // QuantMode sizeof(nvinfer1::DataType) + // dtype sizeof(mDims) + // Dimensions mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size } void SmoothQuantGemmPlugin::serialize(void* buffer) const noexcept { char *d = static_cast(buffer), *a = d; write(d, mQuantMode.value()); write(d, mType); write(d, mDims); mPluginProfiler->serialize(d, mGemmId); TLLM_CHECK(d == a + getSerializationSize()); } void SmoothQuantGemmPlugin::destroy() noexcept { // This gets called when the network containing plugin is destroyed delete this; } void SmoothQuantGemmPlugin::configGemm() { mPluginProfiler->profileTactics(m_sqGemmRunner, mType, mDims, mGemmId); } /////////////// SmoothQuantGemmPluginCreator::SmoothQuantGemmPluginCreator() { // Fill PluginFieldCollection with PluginField arguments metadata mPluginAttributes.clear(); mPluginAttributes.emplace_back(PluginField("has_per_channel_scaling", nullptr, PluginFieldType::kINT32)); mPluginAttributes.emplace_back(PluginField("has_per_token_scaling", nullptr, PluginFieldType::kINT32)); mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32)); mFC.nbFields = mPluginAttributes.size(); mFC.fields = mPluginAttributes.data(); } char const* SmoothQuantGemmPluginCreator::getPluginName() const noexcept { return SQ_GEMM_PLUGIN_NAME; } char const* SmoothQuantGemmPluginCreator::getPluginVersion() const noexcept { return SQ_GEMM_PLUGIN_VERSION; } PluginFieldCollection const* SmoothQuantGemmPluginCreator::getFieldNames() noexcept { return &mFC; } IPluginV2* SmoothQuantGemmPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept { PluginField const* fields = fc->fields; bool perTokenScaling{}; bool perChannelScaling{}; nvinfer1::DataType type{}; // Read configurations from each fields for (int i = 0; i < fc->nbFields; ++i) { char const* attrName = fields[i].name; if (!strcmp(attrName, "has_per_channel_scaling")) { TLLM_CHECK(fields[i].type == PluginFieldType::kINT32); perChannelScaling = static_cast(*(static_cast(fields[i].data))); } else if (!strcmp(attrName, "has_per_token_scaling")) { TLLM_CHECK(fields[i].type == PluginFieldType::kINT32); perTokenScaling = static_cast(*(static_cast(fields[i].data))); } else if (!strcmp(attrName, "type_id")) { TLLM_CHECK(fields[i].type == PluginFieldType::kINT32); type = static_cast(*(static_cast(fields[i].data))); } } try { // SmoothQuantGemmPluginCreator is unique and shared for an engine generation // Create plugin profiler with shared tactics map auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false); QuantMode quantMode = QuantMode::fromDescription(true, true, perTokenScaling, perChannelScaling, false, false, false, false, false, false, false, false, false, false, false, false); auto* obj = new SmoothQuantGemmPlugin(quantMode, type, pluginProfiler); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (std::exception const& e) { caughtError(e); } return nullptr; } IPluginV2* SmoothQuantGemmPluginCreator::deserializePlugin( char const* name, void const* serialData, size_t serialLength) noexcept { // This object will be deleted when the network is destroyed, which will // call SmoothQuantGemmPlugin::destroy() try { // Create plugin profiler with private tactics map which is read from the serialized engine auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true); auto* obj = new SmoothQuantGemmPlugin(serialData, serialLength, pluginProfiler); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (std::exception const& e) { caughtError(e); } return nullptr; }