/* * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & * AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/customAllReduceUtils.h" #include "tensorrt_llm/common/dataType.h" #include "tensorrt_llm/common/mcastDevMemUtils.h" #include "tensorrt_llm/common/opUtils.h" #include "tensorrt_llm/kernels/communicationKernels/allReduceFusionKernels.h" #include "tensorrt_llm/kernels/communicationKernels/customLowPrecisionAllReduceKernels.h" #include "tensorrt_llm/kernels/communicationKernels/mnnvlTwoShotAllreduceKernels.h" #include "tensorrt_llm/kernels/communicationKernels/moeAllReduceFusionKernels.h" #include "tensorrt_llm/kernels/customAllReduceKernels.h" #include "tensorrt_llm/kernels/quantization.h" #include "tensorrt_llm/kernels/userbuffers/ub_interface.h" #include "tensorrt_llm/runtime/mcastDeviceMemory.h" #include "tensorrt_llm/runtime/torchUtils.h" #include "tensorrt_llm/runtime/utils/mpiUtils.h" #include "tensorrt_llm/thop/fp4Quantize.h" #include "tensorrt_llm/thop/fp8Op.h" #include "tensorrt_llm/thop/thUtils.h" #include "tensorrt_llm/thop/userbuffersTensor.h" #if ENABLE_MULTI_DEVICE #include #include #endif // ENABLE_MULTI_DEVICE #include #include #include #include #include // using namespace nvinfer1; using tensorrt_llm::kernels::AllReduceFusionOp; using tensorrt_llm::kernels::AllReduceStrategyType; using tensorrt_llm::mpi::MpiTag; namespace torch_ext { #if ENABLE_MULTI_DEVICE namespace { class NvmlManager { public: NvmlManager() { NVML_CHECK_THROW(nvmlInit()); } ~NvmlManager() { NVML_CHECK(nvmlShutdown()); } }; std::set getLocalGroup(std::set const& group) { auto const myRank = COMM_SESSION.getRank(); auto const myLocalRank = LOCAL_COMM_SESSION.getRank(); auto const localSize = static_cast(LOCAL_COMM_SESSION.getSize()); std::vector ranks(localSize, 0); std::vector localRanks(localSize, 0); if (group.size() >= localSize) { LOCAL_COMM_SESSION.allgather(&myRank, ranks.data(), 1, tensorrt_llm::mpi::MpiType::kINT32); LOCAL_COMM_SESSION.allgather(&myLocalRank, localRanks.data(), 1, tensorrt_llm::mpi::MpiType::kINT32); } else { if (myRank == *group.begin()) { ranks.clear(); int rank; ranks.push_back(myRank); for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it) { LOCAL_COMM_SESSION.recvValue(rank, *it, MpiTag::kDefault); ranks.push_back(rank); } for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it) { LOCAL_COMM_SESSION.send( ranks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *it, MpiTag::kDefault); } localRanks.clear(); localRanks.push_back(myLocalRank); for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it) { LOCAL_COMM_SESSION.recvValue(rank, *it, MpiTag::kDefault); localRanks.push_back(rank); } for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it) { LOCAL_COMM_SESSION.send( localRanks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *it, MpiTag::kDefault); } } else { LOCAL_COMM_SESSION.sendValue(myRank, *group.begin(), MpiTag::kDefault); LOCAL_COMM_SESSION.recv( ranks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *group.begin(), MpiTag::kDefault); LOCAL_COMM_SESSION.sendValue(myLocalRank, *group.begin(), MpiTag::kDefault); LOCAL_COMM_SESSION.recv( localRanks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *group.begin(), MpiTag::kDefault); } } std::set localGroup; for (size_t i = 0; i < ranks.size(); ++i) { auto rank = ranks[i]; if (group.find(rank) != group.end()) { localGroup.insert(localRanks[i]); } } return localGroup; } class AllreduceOp { public: AllreduceOp( std::set group, nvinfer1::DataType type, AllReduceStrategyType strategy, AllReduceFusionOp op, float eps) : mGroup(std::move(group)) , mType(type) , mStrategy(strategy) , mOp(op) , mEps(eps) { } ~AllreduceOp() = default; std::vector run(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias, bool trigger_completion_at_end, torch::optional workspace) noexcept { size_t size = input.numel(); size_t seq_len = input.size(0); size_t bytes_per_element = input.element_size(); TLLM_LOG_DEBUG("All reduce message size is %zu", size * bytes_per_element); AllReduceStrategyType runtime_strategy = getRuntimeStrategy(seq_len, size); // Log runtime strategy auto const rank = COMM_SESSION.getRank(); logRunTimeStrategy(runtime_strategy, rank); // Dispatch to different allreduce implementations switch (runtime_strategy) { case AllReduceStrategyType::UB: return runUBAllReduce(input, residual, norm_weight, scale, bias); case AllReduceStrategyType::NCCL: return runNCCLAllReduce(input, residual, norm_weight, scale, bias); case AllReduceStrategyType::NCCL_SYMMETRIC: return runNCCLAllReduceSymmetric(input, residual, norm_weight, scale, bias); case AllReduceStrategyType::MIN_LATENCY: case AllReduceStrategyType::ONESHOT: case AllReduceStrategyType::TWOSHOT: return runFusionAllReduce( input, residual, norm_weight, scale, bias, trigger_completion_at_end, workspace, runtime_strategy); case AllReduceStrategyType::LOWPRECISION: return runLowPrecisionAllReduce(input, residual, norm_weight, scale, bias); default: TORCH_CHECK(false, "Invalid runtime strategy"); return {}; } } int initialize() { TLLM_LOG_TRACE("%s start for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank()); mNcclComm = getComm(mGroup); if (mStrategy != AllReduceStrategyType::NCCL && mStrategy != AllReduceStrategyType::UB) { initGroupTopology(); } TLLM_LOG_TRACE("%s stop for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank()); return 0; } private: std::vector runUBAllReduce(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias) { auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); int size = input.numel(); int hidden_size = input.size(-1); torch::Tensor residual_out = torch::empty_like(input); TLLM_CHECK(mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8 || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4); TLLM_CHECK_WITH_INFO(tensorrt_llm::runtime::ub::ub_is_initialized(), "UserBuffer has not been initialized!"); auto& ub_manager = tensorrt_llm::runtime::ub::UserBuffersManager::get_instance(); auto ub_buffer0 = ub_manager.search_buffer(input.data_ptr()); TLLM_CHECK(!ub_buffer0.invalid()); auto ub_comm = ub_manager.comm(); int m = size / hidden_size; if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { TORCH_CHECK(norm_weight, "norm_weight is required for residual rms norm allreduce"); TORCH_CHECK(!bias, "bias is not supported for residual rms norm allreduce"); TORCH_CHECK(mType == nvinfer1::DataType::kHALF || mType == nvinfer1::DataType::kBF16); auto [norm_out, ub_buffer1] = torch_ext::create_userbuffers_tensor(input.sizes(), input.scalar_type()); tensorrt_llm::kernels::ub::allreduce2_userbuff_rmsnorm_launcher(ub_buffer0.handle, 0, ub_buffer1.handle, 0, size, hidden_size, nullptr, norm_weight.value().data_ptr(), mEps, residual.value().data_ptr(), residual_out.data_ptr(), mType, ub_comm, stream); return {norm_out, residual_out}; } else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8) { TORCH_CHECK(scale, "scale is required for FP8 allreduce"); TORCH_CHECK(norm_weight, "norm_weight is required for FP8 allreduce"); TORCH_CHECK(!bias, "bias is not supported for FP8 allreduce"); auto [norm_out, ub_buffer1] = torch_ext::create_userbuffers_tensor(input.sizes(), torch::kFloat8_e4m3fn); tensorrt_llm::kernels::ub::allreduce2_userbuff_inplace_rmsnorm_quant_launcher(ub_buffer0.handle, 0, ub_buffer1.handle, 0, size, hidden_size, nullptr, norm_weight.value().data_ptr(), mEps, static_cast(scale.value().data_ptr()), residual.value().data_ptr(), residual_out.data_ptr(), mType, ub_comm, stream); return {norm_out, residual_out}; } else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4) { TORCH_CHECK(scale, "scale is required for FP4 allreduce"); TORCH_CHECK(norm_weight, "norm_weight is required for FP4 allreduce"); TORCH_CHECK(!bias, "bias is not supported for FP4 allreduce"); int const sfVecSize = 16; int scale_size = tensorrt_llm::common::roundUp(m, 128) * tensorrt_llm::common::roundUp(hidden_size / sfVecSize, 4); TORCH_CHECK(hidden_size % sfVecSize == 0, "hidden_size must be divisible by 16 for FP4 allreduce"); auto output_shape = input.sizes().vec(); output_shape.back() /= 2; auto output_strides = input.strides().vec(); for (size_t i = 0; i < output_shape.size() - 1; i++) { output_strides[i] /= 2; } auto [quant_out, ub_buffer1] = torch_ext::create_userbuffers_tensor(output_shape, torch::kByte); auto [scale_out, ub_buffer2] = torch_ext::create_userbuffers_tensor({scale_size}, torch::kByte); tensorrt_llm::kernels::ub::allreduce2_userbuff_inplace_rmsnorm_quant_fp4_launcher(ub_buffer0.handle, 0, ub_buffer1.handle, 0, ub_buffer2.handle, 0, size, hidden_size, nullptr, norm_weight.value().data_ptr(), mEps, static_cast(scale.value().data_ptr()), residual.value().data_ptr(), residual_out.data_ptr(), mType, ub_comm, stream); return {quant_out, scale_out, residual_out}; } TORCH_CHECK( false, "UBAllreduce does not support the fusion operation: " + tensorrt_llm::kernels::toString(mOp)); return {}; } std::vector runNCCLAllReduce(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias) { auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); int size = input.numel(); torch::Tensor reduce_output = torch::empty_like(input); NCCLCHECK_THROW(ncclAllReduce(input.data_ptr(), reduce_output.mutable_data_ptr(), size, (*getDtypeMap())[mType], ncclSum, *mNcclComm, stream)); if (mOp == AllReduceFusionOp::NONE) { return {reduce_output}; } // Treat any other patterns as fallback cases. return fallbackRunSubsequentOps(input, residual, norm_weight, scale, bias, reduce_output); } std::vector runNCCLAllReduceSymmetric(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias) noexcept { auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); int size = input.numel(); auto& ub_manager = tensorrt_llm::runtime::ub::UserBuffersManager::get_instance(); auto ub_buffer0 = ub_manager.search_buffer(input.data_ptr()); if (ub_buffer0.invalid()) { auto [symmetric_input, symmetric_ub_buffer0] = torch_ext::create_userbuffers_tensor(input.sizes(), input.scalar_type()); cudaMemcpyAsync(symmetric_ub_buffer0.addr, input.data_ptr(), size * input.element_size(), cudaMemcpyDeviceToDevice, stream); ub_buffer0 = symmetric_ub_buffer0; } TLLM_CHECK(!ub_buffer0.invalid()); auto [norm_out, ub_buffer1] = torch_ext::create_userbuffers_tensor(input.sizes(), input.scalar_type()); NCCLCHECK(ncclAllReduce( ub_buffer0.addr, norm_out.mutable_data_ptr(), size, (*getDtypeMap())[mType], ncclSum, *mNcclComm, stream)); if (mOp == AllReduceFusionOp::NONE) { return {norm_out}; } // Treat any other patterns as fallback cases. return fallbackRunSubsequentOps(input, residual, norm_weight, scale, bias, norm_out); } std::vector runLowPrecisionAllReduce(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias) noexcept { #ifdef ENABLE_FP8 auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); int size = input.numel(); int hidden_size = input.size(-1); auto const tp_size = mGroup.size(); auto const cur_rank = COMM_SESSION.getRank(); int tp_rank = 0; for (auto const& currentRank : mGroup) { if (cur_rank == currentRank) break; ++tp_rank; } int bytes_per_element = input.element_size(); int token_num = size / hidden_size; auto parts = tensorrt_llm::kernels::splitNumber(size); torch::Tensor reduce_output = torch::empty_like(input); size_t global_offset = 0; for (size_t i = 0; i < parts.size(); ++i) { size_t tmp_size = parts[i]; tensorrt_llm::kernels::LowPrecisionAllReduceParams tmp_param; if (tp_size <= 4) { tmp_param = tensorrt_llm::kernels::LowPrecisionAllReduceParams::deserialize( tp_size, tp_rank, mType, token_num, hidden_size); } else { tmp_param = tensorrt_llm::kernels::LowPrecisionAllReduceParams::deserialize_hier( tp_size, tp_rank, mType, token_num, hidden_size); } tmp_param.local_input_buffer_ptr = reinterpret_cast( reinterpret_cast(input.data_ptr()) + global_offset * bytes_per_element); tmp_param.local_output_buffer_ptr = reinterpret_cast( reinterpret_cast(reduce_output.mutable_data_ptr()) + global_offset * bytes_per_element); tmp_param.elts_total = tmp_size; tensorrt_llm::kernels::customLowPrecisionAllReduce(tmp_param, mType, stream); global_offset += tmp_size; } if (mOp == AllReduceFusionOp::NONE) { return {reduce_output}; } // Treat any other patterns as fallback cases. return fallbackRunSubsequentOps(input, residual, norm_weight, scale, bias, reduce_output); #else C10_THROW_ERROR(NotImplementedError, "Can't use LOWPRECISION without compile with ENABLE FP8."); #endif } std::vector runFusionAllReduce(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias, bool trigger_completion_at_end, torch::optional workspace, AllReduceStrategyType strategy) noexcept { // Should handle only Lamport implementation auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); int size = input.numel(); int hidden_size = input.size(-1); int seq_len = input.size(0); auto const tp_size = mGroup.size(); auto const cur_rank = COMM_SESSION.getRank(); int tp_rank = 0; for (auto const& currentRank : mGroup) { if (cur_rank == currentRank) break; ++tp_rank; } // Use cleaner output assigning torch::Tensor reduce_out; torch::Tensor residual_out; torch::Tensor norm_out; torch::Tensor quant_out; torch::Tensor scale_out; tensorrt_llm::kernels::ar_fusion::AllReduceFusionParams allreduce_fusion_params; allreduce_fusion_params.residual_in = nullptr; allreduce_fusion_params.rms_gamma = nullptr; allreduce_fusion_params.allreduce_out = nullptr; allreduce_fusion_params.quant_out = nullptr; allreduce_fusion_params.scale_out = nullptr; allreduce_fusion_params.residual_out = nullptr; allreduce_fusion_params.norm_out = nullptr; allreduce_fusion_params.trigger_completion_at_end = trigger_completion_at_end; // Determine if using oneshot or twoshot allreduce kernel if (strategy == AllReduceStrategyType::MIN_LATENCY) { allreduce_fusion_params.use_oneshot = seq_len <= tensorrt_llm::kernels::ar_fusion::kOneShotMaxToken; } else { allreduce_fusion_params.use_oneshot = strategy == AllReduceStrategyType::ONESHOT; } // Check for some kernel constraints if using TWOSHOT kernel if (!allreduce_fusion_params.use_oneshot) { TORCH_CHECK(input.size(0) >= static_cast(tp_size), "Sequence length must be greater than or equal to TP size"); } // Handle no fusion allreduce here if (mOp == AllReduceFusionOp::NONE) { reduce_out = torch::empty_like(input); allreduce_fusion_params.allreduce_out = reduce_out.mutable_data_ptr(); allreduce_fusion_params.pattern = tensorrt_llm::kernels::ar_fusion::AllReduceFusionPattern::kAllReduce; } // Handle allreduce fusion here // Prepare required output tensors for each fusion pattern else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { norm_out = torch::empty_like(input); residual_out = torch::empty_like(residual.value()); allreduce_fusion_params.norm_out = norm_out.mutable_data_ptr(); allreduce_fusion_params.residual_out = residual_out.mutable_data_ptr(); allreduce_fusion_params.pattern = tensorrt_llm::kernels::ar_fusion::AllReduceFusionPattern::kARResidualRMSNorm; } else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8 || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8) { quant_out = at::detail::empty_cuda(input.sizes(), torch::kFloat8_e4m3fn, input.device(), std::nullopt); residual_out = torch::empty_like(residual.value()); allreduce_fusion_params.quant_out = quant_out.mutable_data_ptr(); allreduce_fusion_params.residual_out = residual_out.mutable_data_ptr(); allreduce_fusion_params.pattern = tensorrt_llm::kernels::ar_fusion::AllReduceFusionPattern::kARResidualRMSNormFP8Quant; // norm out is required if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8) { norm_out = torch::empty_like(input); allreduce_fusion_params.norm_out = norm_out.mutable_data_ptr(); allreduce_fusion_params.pattern = tensorrt_llm::kernels::ar_fusion::AllReduceFusionPattern::kARResidualRMSNormOutFP8Quant; } } else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4 || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4) { // TODO: Better check for each pattern int64_t sf_vec_size = 16; int64_t m = 1; auto const& input_shape = input.sizes(); auto const& r = input_shape.size(); TORCH_CHECK(r >= 2, "Input should be >=2D tensor."); for (size_t i = 0; i < r - 1; i++) { m *= input_shape[i]; } auto const k = input_shape[r - 1]; TORCH_CHECK(k % sf_vec_size == 0, "Input should be divisible by sfVecSize."); std::vector output_shape(input_shape.begin(), input_shape.end()); output_shape[r - 1] = k / 2; quant_out = at::detail::empty_cuda(output_shape, FLOAT4_E2M1X2, input.device(), std::nullopt); scale_out = at::detail::empty_cuda({tensorrt_llm::computeSwizzledLayoutSFSize(m, k / sf_vec_size)}, SF_DTYPE, input.device(), std::nullopt); residual_out = torch::empty_like(residual.value()); allreduce_fusion_params.quant_out = quant_out.mutable_data_ptr(); allreduce_fusion_params.scale_out = scale_out.mutable_data_ptr(); allreduce_fusion_params.residual_out = residual_out.mutable_data_ptr(); allreduce_fusion_params.pattern = tensorrt_llm::kernels::ar_fusion::AllReduceFusionPattern::kARResidualRMSNormFP4Quant; // norm out is required if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4) { norm_out = torch::empty_like(input); allreduce_fusion_params.norm_out = norm_out.mutable_data_ptr(); allreduce_fusion_params.pattern = tensorrt_llm::kernels::ar_fusion::AllReduceFusionPattern::kARResidualRMSNormOutFP4Quant; } } else { TORCH_CHECK(false, "Unsupported fusion operation: " + tensorrt_llm::kernels::toString(mOp)); return {}; } allreduce_fusion_params.nranks = tp_size; allreduce_fusion_params.rank = tp_rank; allreduce_fusion_params.dtype = mType; allreduce_fusion_params.size = size; allreduce_fusion_params.hidden_dim = hidden_size; allreduce_fusion_params.workspace = reinterpret_cast(workspace.value().mutable_data_ptr()); allreduce_fusion_params.allreduce_in = input.data_ptr(); if (mOp != AllReduceFusionOp::NONE) { allreduce_fusion_params.residual_in = residual.value().data_ptr(); allreduce_fusion_params.rms_gamma = norm_weight.value().data_ptr(); allreduce_fusion_params.rms_eps = mEps; } allreduce_fusion_params.stream = stream; bool const is_scale_factor_required = mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8 || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8 || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4 || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4; allreduce_fusion_params.scale_factor = is_scale_factor_required ? static_cast(scale.value().data_ptr()) : nullptr; tensorrt_llm::kernels::ar_fusion::allreduce_fusion_op(allreduce_fusion_params); // Pack output tensors switch (mOp) { case AllReduceFusionOp::NONE: return {reduce_out}; case AllReduceFusionOp::RESIDUAL_RMS_NORM: return {norm_out, residual_out}; case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8: return {quant_out, residual_out}; case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8: return {norm_out, quant_out, residual_out}; case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4: return {quant_out, scale_out, residual_out}; case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4: return {norm_out, quant_out, scale_out, residual_out}; default: TORCH_CHECK(false, "Unsupported fusion operation: " + tensorrt_llm::kernels::toString(mOp)); } return {}; } std::vector fallbackRunSubsequentOps(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias, torch::Tensor& reduce_output) { // If we reach here, it means the extra fallback operations are required. // All patterns are broken into ALlReduce + residual_rms_norm + following operations (quantization, etc.) auto const size = input.numel(); auto const hidden_size = input.size(-1); auto const stream = at::cuda::getCurrentCUDAStream(input.get_device()); torch::Tensor norm_out = torch::empty_like(input); tensorrt_llm::kernels::AllReduceParams params; params.fusion_params.bias_buffer = bias ? bias.value().data_ptr() : nullptr; params.fusion_params.residual_buffer = residual ? residual.value().data_ptr() : nullptr; params.fusion_params.weight_buffer = norm_weight ? norm_weight.value().data_ptr() : nullptr; params.local_output_buffer_ptr = norm_out.mutable_data_ptr(); params.elts_total = size; params.fusion_params.hidden_size = hidden_size; params.fusion_params.eps = mEps; params.fusion_params.intermediate_buffer = reduce_output.mutable_data_ptr(); tensorrt_llm::kernels::residualRmsNorm(params, mType, stream, AllReduceFusionOp::RESIDUAL_RMS_NORM); // If no quantization is needed, return the norm and residual outputs. if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { return {norm_out, reduce_output}; } const int64_t sf_vecsize = 16; bool const sf_use_ue8m0 = false; bool const is_sf_swizzled_layout = true; TORCH_CHECK(scale, "scale is required for quantization ops"); // Attach the subsequent operations after the residual RMS norm all-reduce and return the final outputs. switch (mOp) { case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8: { auto [quant_out, scale_out] = torch_ext::symmetric_static_quantize_per_tensor(norm_out, scale.value()); return {quant_out, reduce_output}; } case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4: { auto [quant_out, scale_out] = torch_ext::fp4_quantize(norm_out, scale.value(), sf_vecsize, sf_use_ue8m0, is_sf_swizzled_layout); return {quant_out, scale_out, reduce_output}; } case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8: { auto [quant_out, scale_out] = torch_ext::symmetric_static_quantize_per_tensor(norm_out, scale.value()); return {norm_out, quant_out, reduce_output}; } case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4: { auto [quant_out, scale_out] = torch_ext::fp4_quantize(norm_out, scale.value(), sf_vecsize, sf_use_ue8m0, is_sf_swizzled_layout); return {norm_out, quant_out, scale_out, reduce_output}; } default: break; } TORCH_CHECK(false, "Unsupported fusion operation: " + tensorrt_llm::kernels::toString(mOp)); return {}; } AllReduceStrategyType getRuntimeStrategy(size_t seq_len, size_t size) { AllReduceStrategyType runtime_strategy; if (mStrategy == AllReduceStrategyType::UB) { runtime_strategy = AllReduceStrategyType::UB; } else if (mStrategy == AllReduceStrategyType::NCCL) { runtime_strategy = AllReduceStrategyType::NCCL; } else if (mStrategy == AllReduceStrategyType::NCCL_SYMMETRIC) { runtime_strategy = AllReduceStrategyType::NCCL_SYMMETRIC; } else { // This is for DEBUG and BENCHMARK purpose. It will overried the strategy if AUTO is set. static char* ifForBenchMark = std::getenv("OVERRIDE_HEURISTIC_ALLREDUCE_STRATEGY"); if (ifForBenchMark != nullptr) { runtime_strategy = mStrategy; } else { runtime_strategy = selectImplementation(seq_len, size, mGroup.size(), mType); } } return runtime_strategy; } void logRunTimeStrategy(AllReduceStrategyType strategy, int rank) { switch (strategy) { case AllReduceStrategyType::NCCL: { TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: NCCL", rank); break; } case AllReduceStrategyType::NCCL_SYMMETRIC: { TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: NCCL_SYMMETRIC", rank); break; } case AllReduceStrategyType::MIN_LATENCY: { TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: MIN_LATENCY", rank); break; } case AllReduceStrategyType::UB: { TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: UB", rank); break; } case AllReduceStrategyType::LOWPRECISION: { TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: LOWPRECISION", rank); break; } default: TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: UNKNOWN: %d", rank, strategy); break; } } void initGroupTopology() { static std::map, std::tuple> cache; if (cache.find(mGroup) != cache.end()) { auto [is_NVLINK_supported, is_P2P_supported] = cache[mGroup]; mIsNVLINKSupported = is_NVLINK_supported; mIsP2PSupported = is_P2P_supported; return; } setGroupTopology(); cache[mGroup] = {mIsNVLINKSupported, mIsP2PSupported}; } void setGroupTopology() { auto const rank = COMM_SESSION.getRank(); TLLM_LOG_INFO("Detecting local TP group for rank %d", rank); std::set local_group = getLocalGroup(mGroup); if (mGroup.size() != local_group.size()) { mIsP2PSupported = false; mIsNVLINKSupported = false; TLLM_LOG_INFO("Found inter-node TP group for rank %d", rank); return; } TLLM_LOG_INFO("TP group is intra-node for rank %d", rank); NvmlManager nvml_manager; std::unordered_set visited_device; mIsP2PSupported = true; mIsNVLINKSupported = true; // Use cudaDeviceCanAccessPeer to determine whether p2p is supported, // and use nvml to determine whether there are nvlink links between ranks. for (int first_device_id : local_group) { for (int second_device_id : local_group) { if (first_device_id == second_device_id || visited_device.find(second_device_id) != visited_device.end()) { continue; } int can_access_peer = 0; TLLM_CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, first_device_id, second_device_id)); if (!can_access_peer) { mIsP2PSupported = false; mIsNVLINKSupported = false; return; } nvmlDevice_t first_device; NVML_CHECK_THROW(nvmlDeviceGetHandleByIndex(first_device_id, &first_device)); bool is_NVLINK = false; for (unsigned int link = 0; link < NVML_NVLINK_MAX_LINKS; link++) { nvmlPciInfo_t remote_pci_info; if (nvmlDeviceGetNvLinkRemotePciInfo_v2(first_device, link, &remote_pci_info) != NVML_SUCCESS) { continue; } nvmlDevice_t remote_device; auto const result = nvmlDeviceGetHandleByPciBusId_v2(remote_pci_info.busId, &remote_device); if (result == NVML_SUCCESS) { // Two GPUs are connected directly through nvlink unsigned int remote_device_id; NVML_CHECK_THROW(nvmlDeviceGetIndex(remote_device, &remote_device_id)); if (remote_device_id == static_cast(second_device_id)) { is_NVLINK = true; } } else if (result == NVML_ERROR_NOT_FOUND) { // Maybe Two GPUs are connected via nvswitch, // now remotePciInfo represents the pci information of nvswitch, // determine whether nvlink is supported by whether two GPUs are connected to the same // nvswitch. nvmlDevice_t second_device; NVML_CHECK_THROW(nvmlDeviceGetHandleByIndex(second_device_id, &second_device)); for (unsigned int second_link = 0; second_link < NVML_NVLINK_MAX_LINKS; second_link++) { nvmlPciInfo_t second_remote_pci_info; if (nvmlDeviceGetNvLinkRemotePciInfo_v2(second_device, second_link, &second_remote_pci_info) != NVML_SUCCESS) { continue; } if (strcmp(remote_pci_info.busId, second_remote_pci_info.busId) == 0) { is_NVLINK = true; break; } } } else { NVML_CHECK_THROW(result); } if (is_NVLINK) { break; } } mIsNVLINKSupported &= is_NVLINK; } visited_device.insert(first_device_id); } } bool ifFallbackToNCCL(size_t seq_len, size_t message_size_bytes, size_t max_workspace_size, bool is_auto) { // If messageSize is less than maxWorkspaceSize, use NCCL, regardless of the fusion type. if (message_size_bytes > max_workspace_size) { if (!is_auto) { TLLM_LOG_WARNING( "Since messageSize is greater than maxWorkspaceSize, fallback to AllReduceStrategy: NCCL"); } return true; } // If Peer to Peer is not supported, fallback to NCCL. if (!mIsP2PSupported) { if (!is_auto) { TLLM_LOG_WARNING("Since Peer to Peer not supported, fallback to AllReduceStrategy: NCCL"); } return true; } // If NVLINK is not supported, fallback to NCCL. if (!mIsNVLINKSupported) { if (!is_auto) { TLLM_LOG_WARNING("Since NVLINK not supported, fallback to AllReduceStrategy: NCCL"); } return true; } return false; } AllReduceStrategyType selectImplementation( size_t seq_len, size_t message_size, int world_size, nvinfer1::DataType type) { if (isUsingLowPrecision(message_size)) { return AllReduceStrategyType::LOWPRECISION; } else { if (mStrategy == AllReduceStrategyType::LOWPRECISION) { mStrategy = AllReduceStrategyType::AUTO; } } // Check that heuristic is only applied when AUTO is set. // Use Auto select bool const is_auto = (mStrategy == AllReduceStrategyType::AUTO); auto const message_size_bytes = message_size * tensorrt_llm::common::getDTypeSize(type); auto const max_workspace_size = tensorrt_llm::utils::customAllReduceUtils::getMaxRequiredWorkspaceSize(world_size); if (ifFallbackToNCCL(seq_len, message_size_bytes, max_workspace_size, is_auto)) { return AllReduceStrategyType::NCCL; } // This rule based heuristic only chooses between NCCL and MIN_LATENCY strategies. // Heurisitic will only be applied on NONE and RESIDUAL_RMS_NORM fusion types. // Because NCCL might be faster on some large messageSize cases. // Otherwise, MIN_LATENCY strategy will be directly returned due to more fusions it can support. // TODO: NCCL AllReduce + subsequent quantization ops (as fallback) can also support the fusion types. // This should be compared with MIN_LATENCY fused kernels to determine the best strategy. switch (mOp) { case AllReduceFusionOp::NONE: case AllReduceFusionOp::RESIDUAL_RMS_NORM: break; case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8: case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8: case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4: case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4: return AllReduceStrategyType::MIN_LATENCY; // Suppose NCCL has fallback implementations for all fusion types. default: return AllReduceStrategyType::NCCL; } // Check mOp to be supported by the heuristic. TORCH_CHECK(mOp == AllReduceFusionOp::NONE || mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM, "Only NONE and RESIDUAL_RMS_NORM are supported for NCCL/MIN_LATENCY heuristic."); // Default to NCCL. AllReduceStrategyType strategy = AllReduceStrategyType::NCCL; // Currently we will not remove ONESHOT and TWOSHOT from the strategy list // But torch flow user should not use them, but use AUTO or MIN_LATENCY instead. // NOTICE: When a fusion type is not supported by the corresponding strategy but strategy is not AUTO, // user should guarantee the correctness of the fusion pattern dispatching. if (!is_auto) { if (mStrategy == AllReduceStrategyType::ONESHOT || mStrategy == AllReduceStrategyType::TWOSHOT) { strategy = AllReduceStrategyType::MIN_LATENCY; } else { strategy = mStrategy; } } else if (world_size <= 2) { strategy = AllReduceStrategyType::MIN_LATENCY; } else { static char* threshold_ptr = std::getenv("ALLREDUCE_AUTO_HEURISTIC_MIN_LATENCY_THRESHOLD_TOKEN_NUM"); size_t threshold = 128; if (threshold_ptr) { threshold = static_cast(std::atoi(threshold_ptr)); } // Generally, NCCL is faster than MIN_LATENCY when the token number is greater than 256. I conservatively // set the threshold here to 128 tokens. if (seq_len > threshold) { strategy = AllReduceStrategyType::NCCL; } else { strategy = AllReduceStrategyType::MIN_LATENCY; } } return strategy; } bool isUsingLowPrecision(size_t message_size) const noexcept { bool force_low_precision = mStrategy == AllReduceStrategyType::LOWPRECISION; #ifdef ENABLE_FP8 // Use LowPrecision if PCIe and p2p support and message size is larger than 2MB constexpr int LowPrecisionMinMessageSize = 2 * 1024 * 1024; return force_low_precision && !mIsNVLINKSupported && mIsP2PSupported && message_size >= LowPrecisionMinMessageSize; #else // Low precision is not available when FP8 is not enabled return false; #endif } private: std::set mGroup; bool mIsNVLINKSupported; bool mIsP2PSupported; nvinfer1::DataType mType; AllReduceStrategyType mStrategy; AllReduceFusionOp mOp; float mEps; std::shared_ptr mNcclComm; }; } // namespace #endif // ENABLE_MULTI_DEVICE std::vector allreduce(torch::Tensor const& input, torch::optional const& residual, torch::optional const& norm_weight, torch::optional const& scale, torch::optional const& bias, torch::optional workspace, torch::List const& group_, int64_t const strategy_, int64_t const fusion_op_, double const eps_, bool const trigger_completion_at_end_) { #if ENABLE_MULTI_DEVICE auto const dtype = tensorrt_llm::runtime::TorchUtils::dataType(input.scalar_type()); auto const strategy = static_cast(int8_t(strategy_)); auto const fusion_op = static_cast(int8_t(fusion_op_)); float const eps = eps_; std::set group; for (int64_t rank : group_) { group.insert(static_cast(rank)); } AllreduceOp op(group, dtype, strategy, fusion_op, eps); op.initialize(); return op.run(input, residual, norm_weight, scale, bias, trigger_completion_at_end_, workspace); #else return {input}; #endif // ENABLE_MULTI_DEVICE } // residual [m, hidden_dim] // norm_weight [hidden_dim] // device_num_experts [1] // scale_input [global_num_experts, m] // active_experts_token_input [device_num_experts, m, hidden_dim] // token_input [m, hidden_dim] std::vector moe_allreduce(torch::Tensor const& residual, torch::Tensor const& norm_weight, torch::Tensor const& device_num_experts, torch::Tensor const& scale_input, torch::Tensor const& active_experts_token_input, torch::Tensor const& token_input, torch::Tensor workspace, int64_t const rank, int64_t const nranks, double const eps) { auto allreduce_fusion_params = tensorrt_llm::kernels::ar_fusion::moe::MoeReductionAllReduceFusionParams(); allreduce_fusion_params.quant_out = nullptr; allreduce_fusion_params.scale_out = nullptr; allreduce_fusion_params.residual_out = nullptr; allreduce_fusion_params.norm_out = nullptr; allreduce_fusion_params.nranks = static_cast(nranks); allreduce_fusion_params.rank = static_cast(rank); allreduce_fusion_params.dtype = tensorrt_llm::runtime::TorchUtils::dataType(token_input.scalar_type()); // size: num_token * hidden_dim allreduce_fusion_params.size = static_cast(token_input.numel()); allreduce_fusion_params.hidden_dim = static_cast(active_experts_token_input.size(-1)); // workspace: AR scratch space allreduce_fusion_params.workspace = reinterpret_cast(workspace.mutable_data_ptr()); allreduce_fusion_params.rms_gamma = norm_weight.data_ptr(); allreduce_fusion_params.rms_eps = static_cast(eps); allreduce_fusion_params.stream = at::cuda::getCurrentCUDAStream(norm_weight.get_device()); allreduce_fusion_params.residual_in = residual.data_ptr(); // MOE Reduction specific params allreduce_fusion_params.allreduce_in = nullptr; // for safety, set nullptr allreduce_fusion_params.moe_reduction_device_num_experts = static_cast(device_num_experts.data_ptr()); allreduce_fusion_params.moe_reduction_scale_input = static_cast(scale_input.data_ptr()); allreduce_fusion_params.moe_reduction_active_experts_token_input = active_experts_token_input.data_ptr(); allreduce_fusion_params.moe_reduction_token_input = token_input.data_ptr(); // output tensors torch::Tensor norm_out = torch::empty_like(token_input); torch::Tensor residual_out = torch::empty_like(residual); allreduce_fusion_params.norm_out = norm_out.mutable_data_ptr(); allreduce_fusion_params.residual_out = residual_out.mutable_data_ptr(); tensorrt_llm::kernels::ar_fusion::moe::moereduction_allreduce_fusion_op(allreduce_fusion_params); return {norm_out, residual_out}; } // Pattern: MoE Reduction + Add + AR + ADD_RMS, see this torch reference implementation: // expert_reduction = finalize(input, expanded_idx_to_permuted_idx, expert_scale_factor) // output_add = expert_reduction + shared_expert_output // output_residual = output_add + residual // output_hidden_states = rms_norm(output_residual, norm_weight, eps) // // Note: // input is the output of MoE FC2 // input [maxPermutedPaddedCount, hidden_dim] // residual [m, hidden_dim] // norm_weight [hidden_dim] // expanded_idx_to_permuted_idx [m, top_k] // expert_scale_factor [m, top_k] // shared_expert_output [m, hidden_dim] std::vector moe_finalize_allreduce(torch::Tensor const& input, torch::Tensor const& residual, torch::Tensor const& norm_weight, torch::Tensor const& expanded_idx_to_permuted_idx, torch::optional const& shared_expert_output, torch::optional const& expert_scale_factor, torch::Tensor workspace, int64_t const rank, int64_t const nranks, double const eps) { auto allreduce_fusion_params = tensorrt_llm::kernels::ar_fusion::moe::MoeFinalizeAllReduceFusionParams(); int hidden_dim = residual.size(-1); int top_k = expanded_idx_to_permuted_idx.size(-1); allreduce_fusion_params.quant_out = nullptr; allreduce_fusion_params.scale_out = nullptr; allreduce_fusion_params.nranks = static_cast(nranks); allreduce_fusion_params.rank = static_cast(rank); allreduce_fusion_params.dtype = tensorrt_llm::runtime::TorchUtils::dataType(input.scalar_type()); // size: num_token * hidden_dim allreduce_fusion_params.size = residual.numel(); allreduce_fusion_params.hidden_dim = hidden_dim; // workspace: AR scratch space allreduce_fusion_params.workspace = reinterpret_cast(workspace.mutable_data_ptr()); allreduce_fusion_params.rms_gamma = norm_weight.data_ptr(); allreduce_fusion_params.rms_eps = static_cast(eps); allreduce_fusion_params.residual_in = residual.data_ptr(); allreduce_fusion_params.stream = at::cuda::getCurrentCUDAStream(norm_weight.get_device()); // MOE Reduction specific params allreduce_fusion_params.top_k = top_k; allreduce_fusion_params.allreduce_in = input.data_ptr(); allreduce_fusion_params.expert_scale_factor = expert_scale_factor.has_value() ? expert_scale_factor.value().data_ptr() : nullptr; allreduce_fusion_params.scale_dtype = tensorrt_llm::runtime::TorchUtils::dataType( expert_scale_factor.has_value() ? expert_scale_factor.value().scalar_type() : input.scalar_type()); TORCH_CHECK( expanded_idx_to_permuted_idx.scalar_type() == torch::kInt32, "expanded_idx_to_permuted_idx must be int32"); allreduce_fusion_params.expanded_idx_to_permuted_idx = static_cast(expanded_idx_to_permuted_idx.data_ptr()); allreduce_fusion_params.shared_expert_output = shared_expert_output.has_value() ? shared_expert_output.value().data_ptr() : nullptr; // output tensors torch::Tensor norm_out = torch::empty_like(residual); torch::Tensor residual_out = torch::empty_like(residual); allreduce_fusion_params.norm_out = norm_out.mutable_data_ptr(); allreduce_fusion_params.residual_out = residual_out.mutable_data_ptr(); tensorrt_llm::kernels::ar_fusion::moe::moefinalize_allreduce_fusion_op(allreduce_fusion_params); return {norm_out, residual_out}; } at::Tensor mnnvlTwoShotAllReduce( at::Tensor& input, at::Tensor& comm_buffer, at::Tensor& buffer_flags, int64_t buffer_size, bool wait_for_results) { auto* mcast_mem = tensorrt_llm::common::findMcastDevMemBuffer(comm_buffer.data_ptr()); TORCH_CHECK(mcast_mem != nullptr, "two_shot_all_reduce: comm_buffer must be obtained from a mcastBuffer instance."); auto const dtype = tensorrt_llm::runtime::TorchUtils::dataType(input.scalar_type()); at::Tensor output = torch::empty_like(input); auto allreduce_params = tensorrt_llm::kernels::mnnvl::AllReduceParams(); allreduce_params.dtype = dtype; allreduce_params.output = output.data_ptr(); allreduce_params.input = input.data_ptr(); allreduce_params.buffer_size = static_cast(buffer_size); allreduce_params.buffer_flags = buffer_flags.data_ptr(); allreduce_params.wait_for_results = wait_for_results; allreduce_params.stream = at::cuda::getCurrentCUDAStream(output.get_device()); allreduce_params.nranks = mcast_mem->getWorldSize(); allreduce_params.rank = mcast_mem->getRank(); allreduce_params.buffer_M = comm_buffer.size(2); allreduce_params.num_tokens = input.size(0); allreduce_params.token_dim = input.size(1); allreduce_params.buffer_ptrs_dev = reinterpret_cast(mcast_mem->getBufferPtrsDev()); allreduce_params.multicast_ptr = mcast_mem->getMulticastPtr(); tensorrt_llm::kernels::mnnvl::twoshot_allreduce_op(allreduce_params); return output; } std::vector twoShotRMSNorm(torch::Tensor const& comm_buf, torch::Tensor const& gamma, double epsilon, torch::Tensor const& residual, torch::Tensor& buffer_flags, int64_t buffer_size) { auto const dtype = tensorrt_llm::runtime::TorchUtils::dataType(comm_buf.scalar_type()); auto rmsnorm_params = tensorrt_llm::kernels::mnnvl::RMSNormParams(); // Input is the communication buffer so we need to get the shape from residual torch::Tensor normed_output = torch::empty_like(residual); torch::Tensor prenorm_output = torch::empty_like(residual); rmsnorm_params.dtype = dtype; rmsnorm_params.residual_output = prenorm_output.data_ptr(); rmsnorm_params.output = normed_output.data_ptr(); rmsnorm_params.input = comm_buf.data_ptr(); rmsnorm_params.gamma = gamma.data_ptr(); rmsnorm_params.epsilon = epsilon; rmsnorm_params.residual = residual.data_ptr(); rmsnorm_params.buffer_size = static_cast(buffer_size); rmsnorm_params.buffer_flags = reinterpret_cast(buffer_flags.data_ptr()); rmsnorm_params.batch = normed_output.size(0); rmsnorm_params.hidden_dim = normed_output.size(1); rmsnorm_params.stream = at::cuda::getCurrentCUDAStream(comm_buf.get_device()); tensorrt_llm::kernels::mnnvl::twoshot_rmsnorm_op(rmsnorm_params); return {normed_output, prenorm_output}; } } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def( "mnnvl_twoshot_allreduce(Tensor(input!) input, Tensor(comm_buf!) comm_buffer, " "Tensor(buffer_flags!) buffer_flags, int buffer_size, bool wait_for_result) -> Tensor"); m.def( "mnnvl_twoshot_rmsnorm(Tensor comm_buf, Tensor gamma, " "float epsilon, Tensor residual, Tensor buffer_flags, int buffer_size) -> Tensor[]"); m.def( "allreduce(" "Tensor input," "Tensor? residual," "Tensor? norm_weight," "Tensor? scale," "Tensor? bias," "Tensor? workspace," "int[] group," "int strategy," "int op," "float eps," "bool trigger_completion_at_end) -> Tensor[]"); m.def( "moe_allreduce(" "Tensor residual," "Tensor norm_weight," "Tensor device_num_experts," "Tensor scale_input," "Tensor active_experts_token_input," "Tensor token_input," "Tensor workspace," "int rank," "int nranks," "float eps) -> Tensor[]"); m.def("initialize_static_lowprecision_buffers(Tensor workspace, int tp_size) -> Tensor[]"); m.def( "moe_finalize_allreduce(" "Tensor input," "Tensor residual," "Tensor norm_weight," "Tensor expanded_idx_to_permuted_idx," "Tensor? shared_expert_output," "Tensor? expert_scale_factor," "Tensor workspace," "int rank," "int nranks," "float eps) -> Tensor[]"); } TORCH_LIBRARY_IMPL(trtllm, CUDA, m) { m.impl("mnnvl_twoshot_allreduce", &torch_ext::mnnvlTwoShotAllReduce); m.impl("mnnvl_twoshot_rmsnorm", &torch_ext::twoShotRMSNorm); m.impl("allreduce", &torch_ext::allreduce); m.impl("moe_allreduce", &torch_ext::moe_allreduce); m.impl("moe_finalize_allreduce", &torch_ext::moe_finalize_allreduce); } TORCH_LIBRARY_IMPL(trtllm, CPU, m) { m.impl("initialize_static_lowprecision_buffers", [](at::Tensor const& workspace, int64_t tp_size) { tensorrt_llm::kernels::initialize_static_lowprecision_buffers( reinterpret_cast(workspace.data_ptr()), (int) tp_size); return std::vector{}; }); }