/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/executor/types.h" #include "tensorrt_llm/runtime/cudaStream.h" #include "tensorrt_llm/runtime/generationInput.h" #include "tensorrt_llm/runtime/generationOutput.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/modelConfig.h" #include "tensorrt_llm/runtime/samplingConfig.h" #include "tensorrt_llm/runtime/worldConfig.h" #include #include #include namespace tensorrt_llm::batch_manager { class DecoderBuffers; } namespace tensorrt_llm::runtime { namespace decoder { class Input { public: using TensorPtr = ITensor::SharedPtr; explicit Input(TensorPtr logits) : logits{std::move(logits)} { TLLM_CHECK_WITH_INFO(static_cast(this->logits), "Invalid logits tensor"); } //! Mandatory parameters //! [batchSize, maxBeamWidth, vocabSizePadded], on gpu TensorPtr logits; //! Parameters for Beam Search //! K/V cache index for beam search, [batchSize, maxBeamWidth, maxSeqLen], on gpu TensorPtr cacheIndirection; }; class Output { public: using TensorPtr = std::shared_ptr; Output() = default; //! Mandatory for beam search //! [batchSize, maxBeamWidth, maxSeqLen], on gpu TensorPtr cacheIndirection; //! [batchSize, maxBeamWidth], on gpu TensorPtr sequenceLengths; }; } // namespace decoder //! GPT decoder class with support for in-flight batching class IStatefulGptDecoder { public: using CudaStreamPtr = std::shared_ptr; using TensorPtr = std::shared_ptr; //! Setup the decoder before calling `forward()`, also calls reshapeBuffers virtual void setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, nvinfer1::DataType dtype, ModelConfig const& modelConfig, WorldConfig const& worldConfig) = 0; //! @brief Initialize the decoder with new batch of inputs. virtual void newBatch(GenerationInput const& inputs, GenerationOutput const& outputs, SamplingConfig const& samplingConfig, ModelConfig const& modelConfig) = 0; //! @brief Run one step for all requests without blocking the host thread. virtual void forwardAsync(decoder::Output& output, decoder::Input const& input) = 0; //! @brief Wait for the last call to `forwardAsync` to complete. virtual void forwardSync() = 0; //! @brief Run one step for all requests. virtual void forward(decoder::Output& output, decoder::Input const& input) { forwardAsync(output, input); return forwardSync(); } //! @brief Gather final beam search results for all requests. virtual void finalize(SamplingConfig const& samplingConfig) const = 0; //! @returns [batchSize, beamWidth, maxSequenceLength], all token ids, on gpu [[nodiscard]] virtual TensorPtr getIds() const = 0; //! @returns [batchSize, beamWidth, maxSequenceLength] token ids after gatherTree [[nodiscard]] virtual TensorPtr getGatheredIds() const = 0; //! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu [[nodiscard]] virtual TensorPtr getCumLogProbs() const = 0; //! @returns [batchSize, maxBeamWidth, maxSequenceLength], log probabilities (per beam), on gpu [[nodiscard]] virtual TensorPtr getLogProbs() const = 0; //! @brief Get tokens generated in one step of last forward pass //! @param iter The iteration within [0; maxTokensPerStep) for which to get the tokens //! @returns [batchSize, beamWidth], tokens generated in `iter` (per beam), on gpu [[nodiscard]] virtual TensorPtr getNewTokens(SizeType32 iter = 0) const = 0; //! @returns [1], number of finished sequences, in pinned host memory [[nodiscard]] virtual TensorPtr getNbFinished() const = 0; virtual ~IStatefulGptDecoder() = default; protected: IStatefulGptDecoder() = default; }; } // namespace tensorrt_llm::runtime