/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/iTensor.h" #include #include namespace tensorrt_llm::runtime { class DecodingInput { public: using TensorPtr = std::shared_ptr; DecodingInput(SizeType32 maxLength, SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxBatchSize, TensorPtr logits, TensorPtr endIds) : step{maxLength} , maxLength{maxLength} , maxAttentionWindow{maxAttentionWindow} , sinkTokenLength{sinkTokenLength} , maxBatchSize{maxBatchSize} , maxStopWordsLen{0} , maxBadWordsLen{0} , logits{std::move(logits)} , endIds{std::move(endIds)} { TLLM_CHECK_WITH_INFO(static_cast(this->logits), "Invalid logits tensor"); TLLM_CHECK_WITH_INFO(static_cast(this->endIds), "Invalid endIds tensor"); } // mandatory parameters SizeType32 step; SizeType32 maxLength; SizeType32 maxAttentionWindow; SizeType32 sinkTokenLength; SizeType32 maxBatchSize; SizeType32 maxStopWordsLen; // The maximum value in the `stopWordsLens` tensor SizeType32 maxBadWordsLen; // The maximum value in the `badWordsLens` tensor TensorPtr logits; // [batchSize, beamWidth, vocabSizePadded], on gpu std::optional> logitsVec; // vector of size [batchSize] contains logits of size [beamWidth, vocabSizePadded], on gpu TensorPtr endIds; // [maxBatchSize * beamWidth], on gpu // optional parameters TensorPtr finished; // [maxBatchSize, beamWidth], finished states at current iteration. // If true for some request, the decoding step of it is skipped, on gpu TensorPtr sequenceLimitLength; // [maxBatchSize], on gpu TensorPtr embeddingBias; // [maxBatchSize, vocabSizePadded], on gpu TensorPtr lengths; // [maxBatchSize, beamWidth], on gpu TensorPtr badWordsList; // [2, badWordsLength] or [maxBatchSize, 2, badWordsLength], on gpu TensorPtr badWordsPtrs; // [maxBatchSize][2, badWordsLength], on gpu TensorPtr badWordsLens; // [maxBatchSize], on gpu TensorPtr stopWordsList; // [maxBatchSize, 2, stopWordsLength], on gpu TensorPtr stopWordsPtrs; // [maxBatchSize][2, stopWordsLength], on gpu TensorPtr stopWordsLens; // [maxBatchSize], on gpu TensorPtr noRepeatNgramSize; // [maxBatchSize], on gpu TensorPtr batchSlots; // [batchSize], optional, address map of the linear batch id to to the seq slots, int32_t, pinned // parameters for beam search TensorPtr cacheIndirection; // [maxBatchSize, beamWidth, maxSeqLen] - the k/v cache index for beam search, on gpu // Medusa class MedusaInputs { public: TensorPtr medusaPaths; // [maxBatchSize, maxTokensPerStep, maxMedusaHeads + 1], on gpu TensorPtr medusaTreeIds; // [maxBatchSize, maxTokensPerStep], on gpu std::vector> medusaLogits; // [maxBatchSize][maxAcceptedDraftTokensPerStep][maxDraftTokens + 1, vocabSizePadded], on gpu TensorPtr medusaCurTokensPerStep; // [maxBatchSize], on gpu TensorPtr medusaTargetTokensPerStep; // [maxBatchSize], on gpu }; std::optional medusaInputs; }; } // namespace tensorrt_llm::runtime