from pathlib import Path from typing import Any, Literal, Optional, Union from transformers import PreTrainedTokenizerBase from ..llmapi.llm import LLM as BaseLLM from ..llmapi.llm import TokenizerBase class LLM(BaseLLM): def __init__(self, model: str, tokenizer: Optional[Union[str, Path, TokenizerBase, PreTrainedTokenizerBase]] = None, tokenizer_mode: Literal['auto', 'slow'] = 'auto', skip_tokenizer_init: bool = False, trust_remote_code: bool = False, tensor_parallel_size: int = 1, dtype: str = "auto", revision: Optional[str] = None, tokenizer_revision: Optional[str] = None, **kwargs: Any): kwargs_dict = dict(kwargs) kwargs_dict['backend'] = 'pytorch' super().__init__(model, tokenizer, tokenizer_mode, skip_tokenizer_init, trust_remote_code, tensor_parallel_size, dtype, revision, tokenizer_revision, **kwargs_dict)