/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/cudaEvent.h" #include "tensorrt_llm/runtime/cudaStream.h" #include "tensorrt_llm/runtime/gptDecoder.h" #include "tensorrt_llm/runtime/iGptDecoderBatch.h" #include "tensorrt_llm/runtime/iTensor.h" #include #include #include #include #include #include namespace tensorrt_llm::runtime { //! GPT decoder class with support for in-flight batching class GptDecoderBatch : public IGptDecoderBatch { public: using CudaStreamPtr = std::shared_ptr; using TensorPtr = std::shared_ptr; GptDecoderBatch(std::size_t vocabSize, std::size_t vocabSizePadded, CudaStreamPtr stream); //! Setup the decoder before calling `forward()` void setup( SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength, nvinfer1::DataType dtype) override; //! @brief Initialize the decoder at `batchIdx` with a new `request`. void newRequest( SizeType batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) override; void newBatch(GenerationInput const& inputs, SamplingConfig const& samplingConfig) override; TokenPtr forwardAsync(decoder_batch::Output& output, decoder_batch::Input const& input) override; void forwardSync(decoder_batch::Token const& e) override; void forwardAsync(decoder::Output& output, decoder::Input const& input) override; bool isFinishedSync() override; //! @return [batchSize], indicators of finished requests [[nodiscard]] std::vector getFinished() const override { return {mFinished.begin(), mFinished.begin() + mActualBatchSize}; } //! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token ids without //! padding for request `batchIdx`, on gpu [[nodiscard]] TensorPtr getOutputIds(SizeType batchIdx) const override { auto tensor = ITensor::slice(mJointDecodingOutput->ids, batchIdx, 1); tensor->squeeze(0); return tensor; } //! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token //! ids without padding, on gpu [[nodiscard]] TensorPtr getOutputIds() const override { return ITensor::slice(mJointDecodingOutput->ids, 0, mActualBatchSize); } //! Execute postProcessRequest and returns OutputIds for request `batchIdx`. //! Result will only be available after event returned //! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token ids without //! padding for request `batchIdx`, on gpu [[nodiscard]] std::tuple getFinalOutputIds(SizeType batchIdx) const override; //! Execute postProcessRequest and returns OutputIds. //! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token //! ids without padding, on gpu [[nodiscard]] TensorPtr getFinalOutputIds() const override; //! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains parent ids collected during beam //! search without padding, on gpu [[nodiscard]] TensorPtr getParentIds() const override { return ITensor::slice(mJointDecodingOutput->parentIds, 0, mActualBatchSize); } //! @returns [batchSize, maxBeamWidth], marks finished requests (per beam), on gpu [[nodiscard]] TensorPtr getFinishedBeams() const override { return ITensor::slice(mJointDecodingOutput->finished, 0, mActualBatchSize); } //! @returns [batchSize, maxBeamWidth], total sequence lengths (per beam), on gpu [[nodiscard]] TensorPtr getOutputLengths() const override { return ITensor::slice(mJointDecodingOutput->lengths, 0, mActualBatchSize); } //! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu [[nodiscard]] TensorPtr getCumLogProbs() const override { return ITensor::slice(mJointDecodingOutput->cumLogProbs, 0, mActualBatchSize); } //! @returns [batchSize, maxBeamWidth], tokens generated in last forward pass, on gpu [[nodiscard]] TensorPtr getNewTokens() const override { return ITensor::slice(mJointDecodingOutput->newTokens, 0, mActualBatchSize); } //! @returns [batchSize], the number of generation steps executed on each request [[nodiscard]] std::vector getNbSteps() const override { return std::vector(mNbSteps.begin(), mNbSteps.begin() + mActualBatchSize); } //! @returns [1], number of finished sequences, in pinned host memory [[nodiscard]] TensorPtr getNbFinished() const override { return mFinishedSum; } private: //! @brief Gather final results for request `batchIdx` CudaEvent postProcessRequest(SizeType batchIdx) const; private: std::size_t const mVocabSize; std::size_t const mVocabSizePadded; CudaStreamPtr mStream; BufferManager mBufferManager; TokenPtr mForwardToken; CudaEvent mForwardEvent; std::vector mStreams; using GptDecoderPtr = std::unique_ptr; std::vector mDecoders; using DecodingInputPtr = std::unique_ptr; std::vector mDecodingInputs; using DecodingOutputPtr = std::unique_ptr; std::vector mDecodingOutputs; DecodingInputPtr mJointDecodingInput; DecodingOutputPtr mJointDecodingOutput; std::vector mNbSteps; std::vector mFinished; TensorPtr mFinishedSum; std::vector mMaxNewTokens; std::vector mBeamWidths; SizeType mMaxSequenceLength{}; SizeType mActualBatchSize{}; }; } // namespace tensorrt_llm::runtime