/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/cudaStream.h" #include "tensorrt_llm/runtime/generationInput.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/samplingConfig.h" #include #include #include #include #include namespace tensorrt_llm::runtime { namespace decoder { class Input { public: using TensorPtr = std::shared_ptr; explicit Input(TensorPtr logits) : logits{std::move(logits)} { TLLM_CHECK_WITH_INFO(static_cast(this->logits), "Invalid logits tensor"); } // mandatory parameters TensorPtr logits; // [batchSize, maxBeamWidth, vocabSizePadded], on gpu // parameters for beam search TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen] - the k/v cache index for beam search, on gpu }; class Output { public: using TensorPtr = std::shared_ptr; Output() = default; // parameters for beam search TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen], mandatory in beam search, on gpu TensorPtr sequenceLengths; // [batchSize, maxBeamWidth], mandatory, on gpu }; } // namespace decoder //! GPT decoder class with support for in-flight batching class IStatefulGptDecoder { public: using CudaStreamPtr = std::shared_ptr; using TensorPtr = std::shared_ptr; //! Setup the decoder before calling `forward()`, also calls reshapeBuffers virtual void setup( SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength, nvinfer1::DataType dtype) = 0; //! @brief Initialize the decoder with new batch of inputs. virtual void newBatch(GenerationInput const& inputs, SamplingConfig const& samplingConfig) = 0; //! @brief Run one step for all requests without blocking the host thread. virtual void forwardAsync(decoder::Output& output, decoder::Input const& input) = 0; //! @brief Wait for the last call to `forwardAsync` to complete and return whether all sequences have finished. virtual bool isFinishedSync() = 0; //! @brief Run one step for all requests. virtual bool forward(decoder::Output& output, decoder::Input const& input) { forwardAsync(output, input); return isFinishedSync(); } //! @brief Gather final results for all requests. virtual TensorPtr getFinalOutputIds() const = 0; //! @returns [batchSize, beamWidth, maxSequenceLength], all token ids, on gpu virtual TensorPtr getOutputIds() const = 0; //! @returns [batchSize, beamWidth], latests generated tokens (per beam), on gpu virtual TensorPtr getNewTokens() const = 0; //! @returns [1], number of finished sequences, in pinned host memory virtual TensorPtr getNbFinished() const = 0; protected: IStatefulGptDecoder() = default; }; } // namespace tensorrt_llm::runtime