#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import os as _os import pathlib as _pl import platform as _pf import sys as _sys import typing as _tp from build_engines_utils import run_command, wincopy def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, *args): build_args = [_sys.executable, "examples/gptj/build.py"] + ( ['--model_dir', str(weight_dir)] if weight_dir else []) + [ '--output_dir', str(engine_dir), '--dtype=float16', '--logits_dtype=float16', '--use_gemm_plugin=float16', '--use_layernorm_plugin=float16', '--max_batch_size=32', '--max_input_len=40', '--max_output_len=20', '--max_beam_width=2', '--log_level=error', ] + list(args) run_command(build_args) def build_engines(model_cache: _tp.Optional[str] = None, only_fp8=False): resources_dir = _pl.Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' model_name = 'gpt-j-6b' # Clone or update the model directory without lfs hf_dir = models_dir / model_name if hf_dir.exists(): assert hf_dir.is_dir() run_command(["git", "pull"], cwd=hf_dir) else: if _pf.system() == "Windows": url_prefix = "" else: url_prefix = "file://" model_url = url_prefix + str( _pl.Path(model_cache) / model_name ) if model_cache else "https://huggingface.co/EleutherAI/gpt-j-6b" run_command([ "git", "clone", model_url, "--single-branch", "--no-local", model_name ], cwd=hf_dir.parent, env={ **_os.environ, "GIT_LFS_SKIP_SMUDGE": "1" }) assert (hf_dir.is_dir()) # Download the model file model_file_name = "pytorch_model.bin" if model_cache: if _pf.system() == "Windows": wincopy(source=str( _pl.Path(model_cache) / model_name / model_file_name), dest=model_file_name, isdir=False, cwd=hf_dir) else: run_command([ "rsync", "-av", str(_pl.Path(model_cache) / model_name / model_file_name), "." ], cwd=hf_dir) else: run_command(["git", "lfs", "pull", "--include", model_file_name], cwd=hf_dir) assert ((hf_dir / model_file_name).is_file()) engine_dir = models_dir / 'rt_engine' / model_name # TODO add Tensor and Pipeline parallelism to GPT-J tp_size = 1 pp_size = 1 tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu" if only_fp8: # with ifb, new plugin print( "\nBuilding fp8-plugin engine using gpt_attention_plugin with inflight-batching, packed" ) # TODO: use dummy scales atm; to re-enable when data is uploaded to the model cache # quantized_fp8_model_arg = '--quantized_fp8_model_path=' + \ # str(_pl.Path(model_cache) / 'fp8-quantized-ammo' / 'gptj_tp1_rank0.npz') build_engine(hf_dir, engine_dir / 'fp8-plugin' / tp_pp_dir, '--use_gpt_attention_plugin=float16', '--enable_fp8', '--fp8_kv_cache', '--use_inflight_batching', '--paged_kv_cache', '--remove_input_padding') else: print("\nBuilding fp16-plugin engine") build_engine(hf_dir, engine_dir / 'fp16-plugin' / tp_pp_dir, '--use_gpt_attention_plugin=float16') print("\nBuilding fp16-plugin-packed engine") build_engine(hf_dir, engine_dir / 'fp16-plugin-packed' / tp_pp_dir, '--use_gpt_attention_plugin=float16', '--remove_input_padding') print("\nBuilding fp16-plugin-packed-paged engine") build_engine(hf_dir, engine_dir / 'fp16-plugin-packed-paged' / tp_pp_dir, '--use_gpt_attention_plugin=float16', '--use_inflight_batching') print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, help="Directory where models are stored") parser.add_argument( "--only_fp8", action="store_true", help="Build engines for only FP8 tests. Implemented for H100 runners.") build_engines(**vars(parser.parse_args()))