# LLaMA This document shows how to build and run a LLaMA model in TensorRT-LLM on both single GPU, single node multi-GPU and multi-node multi-GPU. ## Overview The TensorRT-LLM LLaMA implementation can be found in [tensorrt_llm/models/llama/model.py](../../tensorrt_llm/models/llama/model.py). The TensorRT-LLM LLaMA example code is located in [`examples/llama`](./). There are three main files in that folder:: * [`build.py`](./build.py) to build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run the LLaMA model, * [`run.py`](./run.py) to run the inference on an input text, * [`summarize.py`](./summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset using the model. ## Support Matrix * FP16 * FP8 * INT8 & INT4 Weight-Only * FP8 KV CACHE * Tensor Parallel * STRONGLY TYPED ## Usage The TensorRT-LLM LLaMA example code locates at [examples/llama](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference. ### Build TensorRT engine(s) Need to prepare the HF LLaMA checkpoint first by following the guides here https://huggingface.co/docs/transformers/main/en/model_doc/llama. TensorRT-LLM LLaMA builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights. Normally `build.py` only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallelly building to make the engine building process faster by adding `--parallel_build` argument. Please note that currently `parallel_build` feature only supports single node. Here're some examples: ```bash # Build a single-GPU float16 engine from HF weights. # use_gpt_attention_plugin is necessary in LLaMA. # Try use_gemm_plugin to prevent accuracy issue. # It is recommend to use --remove_input_padding along with --use_gpt_attention_plugin for better performance # Build the LLaMA 7B model using a single GPU and FP16. python build.py --model_dir ./tmp/llama/7B/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/7B/trt_engines/fp16/1-gpu/ # Build the LLaMA 7B model using a single GPU and BF16. python build.py --model_dir ./tmp/llama/7B/ \ --dtype bfloat16 \ --remove_input_padding \ --use_gpt_attention_plugin bfloat16 \ --enable_context_fmha \ --use_gemm_plugin bfloat16 \ --output_dir ./tmp/llama/7B/trt_engines/bf16/1-gpu/ # Build the LLaMA 7B model using a single GPU and apply INT8 weight-only quantization. python build.py --model_dir ./tmp/llama/7B/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --use_weight_only \ --output_dir ./tmp/llama/7B/trt_engines/weight_only/1-gpu/ # Build LLaMA 7B using 2-way tensor parallelism. python build.py --model_dir ./tmp/llama/7B/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/7B/trt_engines/fp16/2-gpu/ \ --world_size 2 \ --tp_size 2 # Build LLaMA 7B using 2-way tensor parallelism and 2-way pipeline parallelism. python build.py --model_dir ./tmp/llama/7B/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/7B/trt_engines/fp16/2-gpu/ \ --world_size 4 \ --tp_size 2 \ --pp_size 2 # Build LLaMA 30B using 2-way tensor parallelism. python build.py --model_dir ./tmp/llama/30B/hf/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/30B/trt_engines/fp16/2-gpu/ \ --world_size 2 \ --tp_size 2 ``` #### LLaMA v2 Updates The LLaMA v2 models with 7B and 13B are compatible with the LLaMA v1 implementation. The above commands still work. For LLaMA v2 70B, there is a restriction on tensor parallelism that the number of KV heads must be **divisible by the number of GPUs**. For example, since the 70B model has 8 KV heads, you can run it with 2, 4 or 8 GPUs (1 GPU as well for FP8). ```bash # Build LLaMA 70B using 8-way tensor parallelism. python build.py --model_dir ./tmp/llama/70B/hf/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/70B/trt_engines/fp16/8-gpu/ \ --world_size 8 \ --tp_size 8 # Build LLaMA 70B using 4-way tensor parallelism and 2-way pipeline parallelism. python build.py --model_dir ./tmp/llama/70B/hf/ \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/70B/trt_engines/fp16/8-gpu/ \ --world_size 8 \ --tp_size 4 \ --pp_size 2 # Build LLaMA 70B TP=8 using Meta checkpoints directly. python build.py --meta_ckpt_dir ./tmp/llama/70B \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/70B/trt_engines/fp16/8-gpu/ \ --world_size 8 \ --tp_size 8 ``` Same instructions can be applied to fine-tuned versions of the LLaMA v2 models (e.g. 7Bf or llama-2-7b-chat). #### INT8 weight only + INT8 KV cache For INT8 KV cache, [`hf_llama_convert.py`](./hf_llama_convert.py) features a `--calibrate-kv-cache, -kv` option. Setting `-kv` will calibrate the model, and then export the scaling factors needed for INT8 KV cache inference. Example: ```bash python3 hf_llama_convert.py -i /llama-models/llama-7b-hf -o /llama/smooth_llama_7B/int8_kv_cache/ --calibrate-kv-cache -t fp16 ``` [`build.py`](./build.py) add new options for the support of INT8 KV cache. `--int8_kv_cache` is the command-line option to enable INT8 KV cache. In addition, it could be combined with INT8 weight-only quantization, as follows: Examples of INT8 weight-only quantization + INT8 KV cache ```bash # Build model with both INT8 weight-only and INT8 KV cache enabled python build.py --ft_model_dir=/llama/smooth_llama_7B/int8_kv_cache/1-gpu/ \ --dtype float16 \ --use_gpt_attention_plugin float16 \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/7B/trt_engines/int8_kv_cache_weight_only/1-gpu \ --int8_kv_cache \ --use_weight_only ``` Test with `summarize.py`: ```bash python summarize.py --test_trt_llm \ --hf_model_location /llama-models/llama-7b-hf \ --data_type fp16 \ --engine_dir ./tmp/llama/7B/trt_engines/int8_kv_cache_weight_only/1-gpu \ --test_hf ``` #### SmoothQuant The smoothquant supports both LLaMA v1 and LLaMA v2. Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine. Example: ```bash python3 hf_llama_convert.py -i /llama-models/llama-7b-hf -o /llama/smooth_llama_7B/sq0.8/ -sq 0.8 --tensor-parallelism 1 --storage-type fp16 ``` [`build.py`](./build.py) add new options for the support of INT8 inference of SmoothQuant models. `--use_smooth_quant` is the starting point of INT8 inference. By default, it will run the model in the _per-tensor_ mode. Then, you can add any combination of `--per-token` and `--per-channel` to get the corresponding behaviors. Examples of build invocations: ```bash # Build model for SmoothQuant in the _per_tensor_ mode. python3 build.py --ft_model_dir=/llama/smooth_llama_7B/sq0.8/1-gpu/ \ --use_smooth_quant # Build model for SmoothQuant in the _per_token_ + _per_channel_ mode python3 build.py --ft_model_dir=/llama/smooth_llama_7B/sq0.8/1-gpu/ \ --use_smooth_quant \ --per_token \ --per_channel ``` Note we use `--ft_model_dir` instead of `--model_dir` and `--meta_ckpt_dir` since SmoothQuant model needs INT8 weights and various scales from the binary files. #### FP8 Post-Training Quantization The examples below uses the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process. First make sure AMMO toolkit is installed (see [examples/quantization/README.md](/examples/quantization/README.md#preparation)) After successfully running the script, the output should be in .npz format, e.g. `quantized_fp8/llama_tp_1_rank0.npz`, where FP8 scaling factors are stored. ```bash # Quantize HF LLaMA 70B into FP8 and export a single-rank checkpoint python quantize.py --model_dir ./tmp/llama/70B \ --dtype float16 \ --qformat fp8 \ --export_path ./quantized_fp8 \ --calib_size 512 \ # Build LLaMA 70B TP=2 using original HF checkpoint + PTQ scaling factors from the single-rank checkpoint python build.py --model_dir ./tmp/llama/70B \ --quantized_fp8_model_path ./quantized_fp8/llama_tp1_rank0.npz \ --dtype float16 \ --use_gpt_attention_plugin float16 \ --use_gemm_plugin float16 \ --output_dir ./tmp/llama/70B/trt_engines/fp8/2-gpu/ \ --remove_input_padding \ --enable_fp8 \ --fp8_kv_cache \ --world_size 2 \ --tp_size 2 ``` #### Groupwise quantization (AWQ/GPTQ) One can enable AWQ/GPTQ INT4 weight only quantization with these options when building engine with `build.py`: - `--use_weight_only` enables weight only GEMMs in the network. - `--per_group` enable groupwise weight only quantization, for GPT-J example, we support AWQ with the group size default as 128. - `--weight_only_precision` should specify the weight only quantization format. Supported formats are `int4_awq` or `int4_gptq`. - `--quant_ckpt_path` passes the quantized checkpoint to build the engine. AWQ/GPTQ examples below involves 2 steps: 1. Weight quantization 2. Build TRT-LLM engine ##### AWQ 1. Weight quantization: NVIDIA AMMO toolkit is used for AWQ weight quantization. Please see [examples/quantization/README.md](/examples/quantization/README.md#preparation) for AMMO installation instructions. ```bash # Quantize HF LLaMA 7B checkpoint into INT4 AWQ format python quantize.py --model_dir ./tmp/llama/7B \ --dtype float16 \ --qformat int4_awq \ --export_path ./llama-7b-4bit-gs128-awq.pt \ --calib_size 32 ``` The quantized model checkpoint is saved to path `./llama-7b-4bit-gs128-awq.pt` for future TRT-LLM engine build. 2. Build TRT-LLM engine: ```bash python build.py --model_dir ./tmp/llama/7B/ \ --quant_ckpt_path ./llama-7b-4bit-gs128-awq.pt \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --use_weight_only \ --weight_only_precision int4_awq \ --per_group \ --output_dir ./tmp/llama/7B/trt_engines/int4_AWQ/1-gpu/ ``` ##### GPTQ To run the GPTQ LLaMa example, the following steps are required: 1. Weight quantization: Quantized weights for GPTQ are generated using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa.git) as follow: ```bash git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git cd GPTQ-for-LLaMa pip install -r requirements.txt # Quantize weights into INT4 and save as safetensors # Quantized weight with parameter "--act-order" is not supported in TRT-LLM python llama.py ./tmp/llama/7B/ c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors ./llama-7b-4bit-gs128.safetensors ``` Let us build the TRT-LLM engine with the saved `./llama-7b-4bit-gs128.safetensors`. 2. Build TRT-LLM engine: ```bash # Build the LLaMA 7B model using 2-way tensor parallelism and apply INT4 GPTQ quantization. # Compressed checkpoint safetensors are generated seperately from GPTQ. python build.py --model_dir ./tmp/llama/7B/ \ --quant_ckpt_path ./llama-7b-4bit-gs128.safetensors \ --dtype float16 \ --remove_input_padding \ --use_gpt_attention_plugin float16 \ --enable_context_fmha \ --use_gemm_plugin float16 \ --use_weight_only \ --weight_only_precision int4_gptq \ --per_group \ --world_size 2 \ --tp_size 2 \ --output_dir ./tmp/llama/7B/trt_engines/int4_GPTQ/2-gpu/ ``` ### Run To run a TensorRT-LLM LLaMA model using the engines generated by build.py ```bash # With fp16 inference python3 run.py --max_output_len=50 \ --tokenizer_dir ./tmp/llama/7B/ \ --engine_dir=./tmp/llama/7B/trt_engines/fp16/1-gpu/ # With bf16 inference python3 run.py --max_output_len=50 \ --tokenizer_dir ./tmp/llama/7B/ \ --engine_dir=./tmp/llama/7B/trt_engines/bf16/1-gpu/ ``` ### Summarization using the LLaMA model ```bash # Run summarization using the LLaMA 7B model in FP16. python summarize.py --test_trt_llm \ --hf_model_location ./tmp/llama/7B/ \ --data_type fp16 \ --engine_dir ./tmp/llama/7B/trt_engines/fp16/1-gpu/ # Run summarization using the LLaMA 7B model quantized to INT8. python summarize.py --test_trt_llm \ --hf_model_location ./tmp/llama/7B/ \ --data_type fp16 \ --engine_dir ./tmp/llama/7B/trt_engines/weight_only/1-gpu/ # Run summarization using the LLaMA 7B model in FP16 using two GPUs. mpirun -n 2 --allow-run-as-root \ python summarize.py --test_trt_llm \ --hf_model_location ./tmp/llama/7B/ \ --data_type fp16 \ --engine_dir ./tmp/llama/7B/trt_engines/fp16/2-gpu/ # Run summarization using the LLaMA 30B model in FP16 using two GPUs. mpirun -n 2 --allow-run-as-root \ python summarize.py --test_trt_llm \ --hf_model_location ./tmp/llama/30B/ \ --data_type fp16 \ --engine_dir ./tmp/llama/30B/trt_engines/fp16/2-gpu/ ``` ## Running CodeLlama Those examples can be used to build and run the CodeLlama models. All 7b, 13b, and 34b sizes and variants are supported. There are a couple of differences in CodeLlama in comparison to LLaMA v1/v2 models: rotary_base (`theta=1000000.0f`) and vocabulary size (`32016` (1)). _(1): Only applicable to 7b and 13b model sizes_. 34b model variants use `32000`. ### Build Use the following command to build `CodeLlama-7b-Instruct`: ``` python build.py --meta_ckpt_dir ./CodeLlama-7b-Instruct/ --dtype float16 \ --remove_input_padding --use_gpt_attention_plugin float16 --use_gemm_plugin float16 \ --enable_context_fmha --output_dir codellama_7b --rotary_base 1000000 --vocab_size 32016 ``` Use the following command to build `CodeLlama-34b-Instruct` for 4 GPUs (TP=4): ``` python build.py --meta_ckpt_dir ./CodeLlama-34b-Instruct/ --dtype float16 \ --remove_input_padding --use_gpt_attention_plugin float16 --use_gemm_plugin float16 --use_rmsnorm_plugin float16 \ --enable_context_fmha --output_dir codellama_34b --rotary_base 1000000 --vocab_size 32000 --world_size 4 --tp_size 4 ``` NOTE: CodeLlama uses the `max_position_embeddings` of 16K. To build the engine for running similarly long input/output, you need to specify that during build. Use `--max_input_len` and `--max_output_len` (which defaults to `2048` and `512`, respectively) according to your use case, e.g.: ``` python build.py --meta_ckpt_dir ./CodeLlama-34b-Instruct/ --dtype float16 \ --remove_input_padding --use_gpt_attention_plugin float16 --use_gemm_plugin float16 --use_rmsnorm_plugin float16 \ --output_dir codellama_34b --rotary_base 1000000 --vocab_size 32000 --world_size 8 --tp_size 8 --parallel_build \ --enable_context_fmha --use_parallel_embedding --max_input_len 15360 --max_output_len 1024 --max_batch_size 4 ``` ### Run Use the following command to run the 7b engine from above: ``` python run.py --max_output_len=40 --tokenizer_dir . --engine_dir codellama_7b --input_text "In Bash, how do I list all text files?" ``` Use the following command to run the 34b engine with long input/output from above: ``` mpirun -n 8 --allow-run-as-root \ python run.py --max_output_len=160 --tokenizer_dir ./CodeLlama-34b-Instruct \ --engine_dir codellama_34b --input_text "In python, write a function for binary searching an element in an integer array." ```