# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from defs.common import convert_weights, venv_mpi_check_call from defs.trt_test_alternative import check_call @pytest.mark.skip_less_device(8) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.skip_less_host_memory(1000000) @pytest.mark.parametrize( "tp_pp_size", [(8, 1), (4, 2)], ids=lambda tp_pp_size: f'tp{tp_pp_size[0]}pp{tp_pp_size[1]}') @pytest.mark.parametrize("dtype", ["float16", "bfloat16"]) @pytest.mark.parametrize("llm_dbrx_model_root", ["dbrx-base", "dbrx-instruct"], indirect=True) def test_llm_dbrx_8gpus(dbrx_example_root, llm_dbrx_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, dtype, tp_pp_size): "Build & run dbrx with 8 gpus" print("Converting checkpoint...") tp_size, pp_size = tp_pp_size world_size = tp_size * pp_size model_name = os.path.basename(llm_dbrx_model_root) ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=dbrx_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_dbrx_model_root, data_type=dtype, gpus=world_size, tp_size=tp_size, pp_size=pp_size, workers=world_size) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", "--max_batch_size=8", "--max_input_len=924", "--max_seq_len=1024", f"--gpt_attention_plugin={dtype}", f"--gemm_plugin={dtype}", f"--moe_plugin={dtype}", f"--workers={world_size}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run engines...") summary_cmd = [ f"{dbrx_example_root}/../summarize.py", "--test_trt_llm", f"--engine_dir={engine_dir}", f"--hf_model_dir={llm_dbrx_model_root}", "--batch_size=8", "--max_ite=40", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=22", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] venv_mpi_check_call( llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"], summary_cmd) @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.skip_less_host_memory(1000000) @pytest.mark.parametrize("test_case", ["int8_wo", "int4_wo", "int8_kv"]) @pytest.mark.parametrize("llm_dbrx_model_root", ["dbrx-base", "dbrx-instruct"], indirect=True) def test_llm_dbrx_quantization_4gpus(dbrx_example_root, llm_dbrx_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, test_case): "Build & run dbrx with 4 gpus" print("Converting checkpoint...") dtype = 'float16' tp_size, pp_size = 4, 1 world_size = tp_size * pp_size model_name = os.path.basename(llm_dbrx_model_root) if test_case == "int8_wo": convert_kwargs = { 'use_weight_only': True, 'weight_only_precision': 'int8' } elif test_case == "int4_wo": convert_kwargs = { 'use_weight_only': True, 'weight_only_precision': 'int4' } elif test_case == "int8_kv": convert_kwargs = { "int8_kv_cache": True, 'calib_dataset': f"{llm_datasets_root}/ccdv/cnn_dailymail" } ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=dbrx_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_dbrx_model_root, data_type=dtype, gpus=world_size, tp_size=tp_size, pp_size=pp_size, workers=world_size, **convert_kwargs) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", "--max_batch_size=8", "--max_input_len=924", "--max_seq_len=1024", f"--gpt_attention_plugin={dtype}", f"--gemm_plugin={dtype}", f"--moe_plugin={dtype}", f"--workers={world_size}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run engines...") summary_cmd = [ f"{dbrx_example_root}/../summarize.py", "--test_trt_llm", f"--engine_dir={engine_dir}", f"--hf_model_dir={llm_dbrx_model_root}", "--batch_size=8", "--max_ite=40", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=20", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] venv_mpi_check_call( llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"], summary_cmd)