#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pathlib import Path import numpy as np # isort: off import run # isort: on import tensorrt_llm.bindings as _tb from tensorrt_llm.bindings.internal.testing import ModelSpec resources_dir = Path(__file__).parent.resolve().parent model_path = resources_dir / "models" def generate_output( model_name: str = "", num_beams: int = 1, max_output_len: int = 8, output_logits: bool = False, output_cum_log_probs: bool = False, output_log_probs: bool = False, ): hf_path = model_path / model_name tp_size = 1 pp_size = 1 cp_size = 1 tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu/" input_file = f"input_tokens_{model_name}.npy" data_input_file_name = resources_dir / "data" / input_file if num_beams == 1: output_dir = resources_dir / "data" / model_name / "sampling" else: output_dir = resources_dir / "data" / model_name / f"beam_search_{num_beams}" output_dir.mkdir(exist_ok=True, parents=True) model_spec_obj_list = [ ModelSpec(input_file, _tb.DataType.HALF).use_gpt_plugin().set_kv_cache_type( _tb.KVCacheType.CONTINUOUS), ModelSpec(input_file, _tb.DataType.HALF).use_gpt_plugin(). use_packed_input().set_kv_cache_type(_tb.KVCacheType.PAGED), ] for model_spec_obj in model_spec_obj_list: engine_dir = model_path / 'rt_engine' / model_name / model_spec_obj.get_model_path( ) / tp_pp_cp_dir base_output_name = os.path.splitext( model_spec_obj.get_results_file())[0] output_npy_file_name = output_dir / f'{base_output_name}.npy' output_csv_file_name = output_dir / f'{base_output_name}.csv' args_list = [ '--engine_dir', str(engine_dir), '--tokenizer_dir', str(hf_path), '--input_file', str(data_input_file_name), '--output_npy', str(output_npy_file_name), '--output_csv', str(output_csv_file_name), '--max_output_len', str(max_output_len), '--num_beams', str(num_beams), '--use_py_session', ] if output_logits: file_name = str(output_npy_file_name)[:-4] + "_logits.npy" args_list.extend(['--output_logits_npy', file_name]) if output_cum_log_probs: file_name = str(output_npy_file_name)[:-4] + "_cum_log_probs.npy" args_list.extend(['--output_cum_log_probs_npy', file_name]) if output_log_probs: file_name = str(output_npy_file_name)[:-4] + "_log_probs.npy" args_list.extend(['--output_log_probs_npy', file_name]) args = run.parse_arguments(args_list) run.main(args) # Convert pad_id to end_id in .npy out put file data = np.load(str(output_npy_file_name)) if model_name == 'chatglm-6b': data[data == 3] = 130005 elif model_name == 'chatglm2-6b' or model_name == 'chatglm3-6b': data[data == 0] = 2 elif model_name == 'glm-10b': data[data == 50256] = 50258 else: raise NameError('bad model name') np.save(str(output_npy_file_name), data) if __name__ == '__main__': generate_output(model_name='chatglm-6b', num_beams=1) generate_output(model_name='chatglm-6b', num_beams=2) generate_output(model_name='chatglm2-6b', num_beams=1) generate_output(model_name='chatglm2-6b', num_beams=2) generate_output(model_name='chatglm3-6b', num_beams=1) generate_output(model_name='chatglm3-6b', num_beams=2) generate_output(model_name='glm-10b', num_beams=1) print("Done")