# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest # isort: off import torch import tensorrt as trt # isort: on import tensorrt_llm class MyAddModule(tensorrt_llm.Module): def __init__(self): super().__init__() def forward(self, x, y): return x + y class TestSession(unittest.TestCase): def test_session_debug_run(self): tensorrt_llm.logger.set_level('verbose') builder = tensorrt_llm.Builder() builder_config = builder.create_builder_config("test", "llmTimingCache") model = MyAddModule() network = builder.create_network() with tensorrt_llm.net_guard(network): x = tensorrt_llm.Tensor(name='x', dtype=trt.float32, shape=[1, 1]) y = tensorrt_llm.Tensor(name='y', dtype=trt.float32, shape=[1, 1]) # Prepare network.set_named_parameters(model.named_parameters()) # Forward z = model(x, y) z.mark_output('z', trt.float32) ### Addtionl debug tensor debug_tensor = x * y debug_tensor.mark_output('debug_tensor', trt.float32) engine = builder.build_engine(network, builder_config) assert engine is not None # Show to _debug_run can be used # You need to mark "z" and "debug_tensor" as output, and then use Session._debug_run # to run inference and get the output session = tensorrt_llm.runtime.Session.from_serialized_engine(engine) inputs = { 'x': torch.rand([1, 1], device='cuda'), 'y': torch.rand([1, 1], device='cuda') } outputs = session._debug_run(inputs) assert 'z' in outputs and 'debug_tensor' in outputs expected_debug_tensor = inputs['x'] * inputs['y'] expected_z = inputs['x'] + inputs['y'] self.assertTrue( torch.allclose(outputs['debug_tensor'], expected_debug_tensor)) self.assertTrue(torch.allclose(outputs['z'], expected_z)) if __name__ == '__main__': unittest.main()