/* * Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "KernelRunner.h" #include "trtllmGen_bmm_export/BatchedGemmInterface.h" #include "trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h" // DO NOT include cudaUtils.h and logger.h before BatchedGemmInterface.h as it #undef TLLM_LOG_INFO and co. #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/config.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/envUtils.h" #include "tensorrt_llm/common/logger.h" TRTLLM_NAMESPACE_BEGIN namespace kernels { using namespace batchedGemm::batchedGemm; using namespace batchedGemm::gemm; using namespace batchedGemm::trtllm::gen; static BatchedGemmInterface::ModuleCache globalTrtllmGenBatchedGemmModuleCache; static std::set printedBmmNames; using tensorrt_llm::common::fmtstr; constexpr bool isSMCompatible(int gpuSM, SmVersion kernelSM) { if (gpuSM == 103) { return kernelSM == SmVersion::Sm100f || kernelSM == SmVersion::Sm103a; } else if (gpuSM == 100) { return kernelSM == SmVersion::Sm100f || kernelSM == SmVersion::Sm100a; } else if (gpuSM == 90) { return kernelSM == SmVersion::Sm90a; } TLLM_THROW("Unexpected gpuSM %d", gpuSM); return false; } std::vector prioritizePredefinedConfigs(int m, int n, int k, std::vector const& sortedIndices, batchedGemm::batchedGemm::BatchedGemmConfig const* configs) { // Function to bubble up the pre-determined config. auto bubbleUpConfig = [&configs](std::vector const& sortedIndices, auto&& pred) -> std::vector { std::vector prioritizedIndices_; // Copy matching configs to new vector std::copy_if(sortedIndices.begin(), sortedIndices.end(), std::back_inserter(prioritizedIndices_), [&configs, &pred](int idx) { BatchedGemmConfig const& config = configs[idx]; return (pred(config)); }); // Copy the rest of the configs to new vector, if not already copied std::copy_if(sortedIndices.begin(), sortedIndices.end(), std::back_inserter(prioritizedIndices_), [&prioritizedIndices_](int idx) { return std::find(prioritizedIndices_.begin(), prioritizedIndices_.end(), idx) == prioritizedIndices_.end(); }); return prioritizedIndices_; }; // Init empty vector std::vector prioritizedIndices; // // Dummy // // Qwen3_235B_TP8_EP1_MoE_FC2 m=4096 k=192 if (n /* out_dim */ == 0 && k /* in_dim */ == 0) { auto pred = [](BatchedGemmConfig const& config) { BatchedGemmOptions const& options = config.mOptions; return options.mNumStages == 4 && options.mNumStagesMma == 2 && options.mTileK == 256 && options.mTileScheduler == TileScheduler::Persistent; }; prioritizedIndices = bubbleUpConfig(sortedIndices, pred); } // // Fall back // else { prioritizedIndices = sortedIndices; } return prioritizedIndices; } TrtllmGenBatchedGemmRunner::TrtllmGenBatchedGemmRunner(TrtllmGenBatchedGemmRunnerOptions const& options_) : mOptions(options_) { // Select a GEMM kernel config to use auto const bmm = BatchedGemmInterface(); auto const configs = bmm.getBatchedGemmConfigs(); mPassingConfigIndices.clear(); // Check if detailed kernel rejection logging is enabled bool enableRejectLog = tensorrt_llm::common::getIntEnv("TLLM_BATCHED_GEMM_LOG_REJECTION").value_or(0) != 0; std::vector rejectReason; if (enableRejectLog) { rejectReason.resize(bmm.getNumBatchedGemmConfigs()); } int gpuSM = tensorrt_llm::common::getSMVersion(); for (size_t i = 0; i < bmm.getNumBatchedGemmConfigs(); ++i) { auto acceptIf = [i, &rejectReason, enableRejectLog](bool condition, std::string const& reason) -> bool { if (condition) { return true; } else if (enableRejectLog) { rejectReason[i] = reason; } return false; }; auto const options = configs[i].mOptions; auto const tileSize = mOptions.transposeMmaOutput ? options.mTileN : options.mTileM; // Check conditions if (!acceptIf(options.mDtypeA == mOptions.dtypeA, fmtstr("dtypeA mismatch (kernel: %s, expected: %s)", tg::dtypeToString(options.mDtypeA).c_str(), tg::dtypeToString(mOptions.dtypeA).c_str()))) { continue; } if (!acceptIf(options.mDtypeB == mOptions.dtypeB, fmtstr("dtypeB mismatch (kernel: %s, expected: %s)", tg::dtypeToString(options.mDtypeB).c_str(), tg::dtypeToString(mOptions.dtypeB).c_str()))) { continue; } if (!acceptIf(options.mDtypeC == mOptions.dtypeC, fmtstr("dtypeC mismatch (kernel: %s, expected: %s)", tg::dtypeToString(options.mDtypeC).c_str(), tg::dtypeToString(mOptions.dtypeC).c_str()))) { continue; } if (!acceptIf(options.mUseDeepSeekFp8 == mOptions.deepSeekFp8, fmtstr( "deepSeekFp8 mismatch (kernel: %d, expected: %d)", options.mUseDeepSeekFp8, mOptions.deepSeekFp8))) { continue; } if (!acceptIf(options.mTransposeMmaOutput == mOptions.transposeMmaOutput, fmtstr("transposeMmaOutput mismatch (kernel: %d, expected: %d)", options.mTransposeMmaOutput, mOptions.transposeMmaOutput))) { continue; } if (!acceptIf((!doesRouteImplUseNoRoute(options.mRouteImpl)) == mOptions.routeAct, fmtstr("routeAct mismatch (kernel: %d, expected: %d)", !doesRouteImplUseNoRoute(options.mRouteImpl), mOptions.routeAct))) { continue; } if (!acceptIf(options.mFusedAct == mOptions.fusedAct, fmtstr("fusedAct mismatch (kernel: %d, expected: %d)", options.mFusedAct, mOptions.fusedAct))) { continue; } if (!acceptIf(options.mIsStaticBatch == mOptions.staticBatch, fmtstr( "staticBatch mismatch (kernel: %d, expected: %d)", options.mIsStaticBatch, mOptions.staticBatch))) { continue; } if (!acceptIf(tileSize == mOptions.tileSize, fmtstr("tileSize mismatch (kernel: %d, expected: %d)", tileSize, mOptions.tileSize))) { continue; } if (!acceptIf(isSMCompatible(gpuSM, configs[i].mSm), fmtstr("SM not compatible (gpuSM: %d, kernelSM: %d)", gpuSM, static_cast(configs[i].mSm)))) { continue; } auto sm = configs[i].mSm; if (sm != SmVersion::Sm100f) { int smVersion = tensorrt_llm::common::getSMVersion(); if (smVersion == 100) { if (!acceptIf(sm == SmVersion::Sm100a, fmtstr("SM version 100 requires Sm100a (kernel has: %d)", static_cast(sm)))) { continue; } } else if (smVersion == 103) { if (!acceptIf(sm == SmVersion::Sm103a, fmtstr("SM version 103 requires Sm103a (kernel has: %d)", static_cast(sm)))) { continue; } } } if (options.mUseDeepSeekFp8) { if (!acceptIf(options.mUseShuffledMatrixA == false, "useShuffledMatrixA should be false for DeepSeek Fp8")) { continue; } } if (options.mFusedAct) { if (!acceptIf(options.mActType == static_cast(mOptions.actType), fmtstr("actType mismatch (kernel: %d, expected: %d)", static_cast(options.mActType), static_cast(mOptions.actType)))) { continue; } } // FIXME: Disables a few static scheduler kernels (schedS) that appears to have issues; // found after commit e257cb3533; still under investigation. Offending kernels: // bmm_E2m1_E2m1E2m1_Fp32_t128x64x256_s6_et128x64_m128x64x64_cga1x1x1_16dp256b_TN_transOut_schedS_bN_ldgsts_tmaOpt_clmp_swiGlu_dynBatch_sm100a // bmm_MxE4m3_MxE2m1MxE4m3_Fp32_t128x64x256_s3_et128x64_m128x64x32_cga1x1x1_16dp256b_TN_transOut_schedS_biasM_bN_ldgsts_tmaOpt_clmp_swiGlu_dynBatch_sm100f if (!acceptIf(!(options.mTileScheduler == TileScheduler::Static && options.mUseTmaOobOpt == true && options.mTileN == 64), "Static scheduler with TmaOobOpt and TileN=64 (known issue)")) { continue; } if (mOptions.transposeMmaOutput) { if (!acceptIf(options.mEpilogueTileM == mOptions.epilogueTileM, fmtstr("epilogueTileM mismatch (kernel: %d, expected: %d)", options.mEpilogueTileM, mOptions.epilogueTileM))) { continue; } } // Kernel passed all filters mPassingConfigIndices.push_back(i); } if (mPassingConfigIndices.empty()) { auto errMsg = fmtstr( "No kernel found for the given options: mDtypeA: %s, mDtypeB: %s, mDtypeC: %s, mUseDeepSeekFp8: %d, " "mTransposeMmaOutput: %d, mRouteAct: %d, mFusedAct: %d, mIsStaticBatch: %d, mTileSize: %d", tg::dtypeToString(mOptions.dtypeA).c_str(), tg::dtypeToString(mOptions.dtypeB).c_str(), tg::dtypeToString(mOptions.dtypeC).c_str(), mOptions.deepSeekFp8, mOptions.transposeMmaOutput, mOptions.routeAct, mOptions.fusedAct, mOptions.staticBatch, mOptions.tileSize); if (enableRejectLog) { // Show all rejection reasons for all kernels errMsg += fmtstr("\n\nRejection details for all %zu kernel(s):\n", bmm.getNumBatchedGemmConfigs()); for (size_t i = 0; i < bmm.getNumBatchedGemmConfigs(); ++i) { errMsg += fmtstr("\n[%zu] %s\n ", i, configs[i].mFunctionName); if (rejectReason[i] == "") { errMsg += "PASSED\n"; } else { errMsg += fmtstr("REJECTED: %s\n", rejectReason[i].c_str()); } } } else { errMsg += "\n\nTo see detailed rejection reasons, set environment variable: TLLM_BATCHED_GEMM_LOG_REJECTION=1"; } TLLM_CHECK_WITH_INFO(false, errMsg); } } size_t TrtllmGenBatchedGemmRunner::getWorkspaceSizeInBytes(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, int32_t configIndex) const { BatchedGemmData gemmData; gemmData.mProblemDimensions.mNumBatches = numBatches; gemmData.mProblemDimensions.mNumTokens = numTokens; gemmData.mProblemDimensions.mBatchM = !mOptions.transposeMmaOutput; gemmData.mProblemDimensions.mBatchedM = mOptions.transposeMmaOutput ? std::vector{} : batchedTokens; gemmData.mProblemDimensions.mBatchedN = mOptions.transposeMmaOutput ? batchedTokens : std::vector{}; gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m; gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n; gemmData.mProblemDimensions.mK = k; gemmData.mProblemDimensions.mRank = 0; gemmData.mProblemDimensions.mWorldSize = 1; gemmData.mProblemDimensions.mMaxNumCtasInTokenDim = maxNumCtasInBatchDim; auto bmm = BatchedGemmInterface(); auto const configs = bmm.getBatchedGemmConfigs(); auto const& config = configs[configIndex]; return bmm.getWorkspaceSizeInBytes(config, gemmData); } void TrtllmGenBatchedGemmRunner::run(int32_t m, int32_t n, int32_t k, int32_t validM, int32_t validN, int32_t validK, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, void const* a, void const* sfA, void const* b, void const* sfB, void const* perTokensSfA, void const* perTokensSfB, float const* scaleC, float const* scaleGateC, float const* ptrBias, float const* ptrAlpha, float const* ptrBeta, float const* ptrClampLimit, void* c, void* outSfC, int32_t const* routeMap, int32_t const* totalNumPaddedTokens, int32_t const* ctaIdxXyToBatchIdx, int32_t const* ctaIdxXyToMnLimit, int32_t const* numNonExitingCtas, void* workspace, CUstream stream, int device, int32_t configIndex) { auto bmm = BatchedGemmInterface(); BatchedGemmData gemmData; auto const configs = bmm.getBatchedGemmConfigs(); auto const& config = configs[configIndex]; TLLM_CHECK_WITH_INFO(numBatches > 0, "Batched GEMM requires numBatches > 0"); if (!mOptions.staticBatch) { TLLM_CHECK_WITH_INFO(totalNumPaddedTokens, "Batched GEMM with dynamic batching requires totalNumPaddedTokens"); TLLM_CHECK_WITH_INFO(ctaIdxXyToBatchIdx, "Batched GEMM with dynamic batching requires ctaIdxXyToBatchIdx"); TLLM_CHECK_WITH_INFO(ctaIdxXyToMnLimit, "Batched GEMM with dynamic batching requires ctaIdxXyToMnLimit"); TLLM_CHECK_WITH_INFO(numNonExitingCtas, "Batched GEMM with dynamic batching requires numNonExitingCtas"); } if (!mOptions.staticBatch && numTokens != 0) { TLLM_CHECK_WITH_INFO( maxNumCtasInBatchDim > 0, "Batched GEMM with dynamic batching requires maxNumCtasInBatchDim > 0"); } if (mOptions.routeAct) { TLLM_CHECK_WITH_INFO(routeMap, "Batched GEMM with routeAct requires routeMap"); TLLM_CHECK_WITH_INFO(numTokens > 0, "Batched GEMM with routeAct requires numTokens > 0"); } // Sanitize optional valid dimensions validM = validM <= 0 ? m : validM; validN = validN <= 0 ? n : validN; validK = validK <= 0 ? k : validK; // Dims gemmData.mProblemDimensions.mNumBatches = numBatches; gemmData.mProblemDimensions.mNumTokens = numTokens; gemmData.mProblemDimensions.mBatchM = !mOptions.transposeMmaOutput; gemmData.mProblemDimensions.mBatchedM = mOptions.transposeMmaOutput ? std::vector{} : batchedTokens; gemmData.mProblemDimensions.mBatchedN = mOptions.transposeMmaOutput ? batchedTokens : std::vector{}; gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m; gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n; gemmData.mProblemDimensions.mK = k; gemmData.mProblemDimensions.mValidM = mOptions.transposeMmaOutput ? validN : validM; gemmData.mProblemDimensions.mValidN = mOptions.transposeMmaOutput ? validM : validN; gemmData.mProblemDimensions.mValidK = validK; gemmData.mProblemDimensions.mRank = 0; gemmData.mProblemDimensions.mWorldSize = 1; // Inputs gemmData.mInputBuffers.mPtrA = mOptions.transposeMmaOutput ? b : a; gemmData.mInputBuffers.mPtrSfA = mOptions.transposeMmaOutput ? sfB : sfA; gemmData.mInputBuffers.mPtrB = mOptions.transposeMmaOutput ? a : b; gemmData.mInputBuffers.mPtrSfB = mOptions.transposeMmaOutput ? sfA : sfB; gemmData.mInputBuffers.mPtrScaleC = scaleC; gemmData.mInputBuffers.mPtrScaleGate = scaleGateC; gemmData.mInputBuffers.mPtrPerTokenSfA = mOptions.transposeMmaOutput ? perTokensSfB : perTokensSfA; gemmData.mInputBuffers.mPtrPerTokenSfB = mOptions.transposeMmaOutput ? perTokensSfA : perTokensSfB; gemmData.mInputBuffers.mPtrBias = ptrBias; gemmData.mInputBuffers.mPtrGatedActAlpha = ptrAlpha; gemmData.mInputBuffers.mPtrGatedActBeta = ptrBeta; gemmData.mInputBuffers.mPtrClampLimit = ptrClampLimit; gemmData.mInputBuffers.mPtrRouteMap = routeMap; gemmData.mProblemDimensions.mMaxNumCtasInTokenDim = maxNumCtasInBatchDim; // Pointer to total number of padded tokens gemmData.mInputBuffers.mPtrTotalNumPaddedTokens = totalNumPaddedTokens; gemmData.mInputBuffers.mPtrCtaIdxXyToBatchIdx = ctaIdxXyToBatchIdx; gemmData.mInputBuffers.mPtrCtaIdxXyToMnLimit = ctaIdxXyToMnLimit; gemmData.mInputBuffers.mPtrNumNonExitingCtas = numNonExitingCtas; // Outputs gemmData.mOutputBuffers.mPtrC = c; gemmData.mOutputBuffers.mPtrSfC = outSfC; int32_t multiProcessorCount; cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, device); auto envVarVal = std::getenv("TLLM_BATCHED_GEMM_PRINT_NAME"); if (envVarVal && std::atoi(envVarVal) == 1) { auto msg = fmtstr( "[PID %d] NumBatches %d, MaxNumCtasInBatchDim %d, ShapeMNK %d %d %d, ValidShapeMNK %d %d %d, Kernel %s", getpid(), numBatches, maxNumCtasInBatchDim, m, n, k, validM, validN, validK, config.mFunctionName); if (printedBmmNames.find(msg) == printedBmmNames.end()) { printedBmmNames.insert(msg); TLLM_LOG_INFO(msg); } } // FIXME once we start using all-reduce in the epilogue of the bmm this can be moved elsewhere bmm.runInitBeforeWorldSync(config, gemmData, static_cast(stream)); auto const err = bmm.run(config, workspace, gemmData, static_cast(stream), multiProcessorCount, tensorrt_llm::common::getEnvEnablePDL(), globalTrtllmGenBatchedGemmModuleCache); CUresult cuErr = static_cast(err); char const* cuErrStr = nullptr; cuGetErrorString(cuErr, &cuErrStr); char const* cuErrName = nullptr; cuGetErrorName(cuErr, &cuErrName); TLLM_CHECK_WITH_INFO(cuErr == CUDA_SUCCESS, "Error occurred when running GEMM! Error %s (%s)" " (numBatches: %d, GemmMNK: %d %d %d, Kernel: %s)", cuErrName ? cuErrName : "UNKNOWN", cuErrStr ? cuErrStr : "Unknown error", numBatches, m, n, k, config.mFunctionName); } void TrtllmGenBatchedGemmRunner::run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, void const* a, void const* sfA, void const* b, void const* sfB, void* c, void* outSfC, void* workspace, CUstream stream, int device, int32_t configIndex, int32_t validM, int32_t validN, int32_t validK) { // Dispatch with block scaling factors and with static batching. run(m, n, k, validM, validN, validK, batchedTokens, /* numTokens */ 0, batchedTokens.size(), /* maxNumCtasInBatchDim */ 0, a, sfA, b, sfB, /* perTokensSfA */ nullptr, /* perTokensSfB */ nullptr, /* scaleC */ nullptr, /* scaleGateC */ nullptr, /* ptrBias */ nullptr, /* ptrAlpha */ nullptr, /* ptrBeta */ nullptr, /* ptrClampLimit */ nullptr, c, outSfC, /* routeMap */ nullptr, /* totalNumPaddedTokens */ nullptr, /* ctaIdxXyToBatchIdx */ nullptr, /* ctaIdxXyToMnLimit */ nullptr, /* numNonExitingCtas */ nullptr, workspace, stream, device, configIndex); } void TrtllmGenBatchedGemmRunner::run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, void const* a, void const* sfA, void const* b, void const* sfB, float const* ptrBias, float const* ptrAlpha, float const* ptrBeta, float const* ptrClampLimit, void* c, void* outSfC, void* workspace, CUstream stream, int device, int32_t configIndex, int32_t validM, int32_t validN, int32_t validK) { // Dispatch with block scaling factors and with static batching. run(m, n, k, validM, validN, validK, batchedTokens, /* numTokens */ 0, batchedTokens.size(), /* maxNumCtasInBatchDim */ 0, a, sfA, b, sfB, /* perTokensSfA */ nullptr, /* perTokensSfB */ nullptr, /* scaleC */ nullptr, /* scaleGateC */ nullptr, ptrBias, ptrAlpha, ptrBeta, ptrClampLimit, c, outSfC, /* routeMap */ nullptr, /* totalNumPaddedTokens */ nullptr, /* ctaIdxXyToBatchIdx */ nullptr, /* ctaIdxXyToMnLimit */ nullptr, /* numNonExitingCtas */ nullptr, workspace, stream, device, configIndex); } void TrtllmGenBatchedGemmRunner::run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, void const* a, void const* b, float const* scaleC, float const* scaleGateC, void* c, void* workspace, CUstream stream, int device, int32_t configIndex, int32_t validM, int32_t validN, int32_t validK) { // Dispatch with block scaling factors and with static batching. run(m, n, k, validM, validN, validK, batchedTokens, /* numTokens */ 0, batchedTokens.size(), /* maxNumCtasInBatchDim */ 0, a, /* sfA */ nullptr, b, /* sfB */ nullptr, /* perTokensSfA */ nullptr, /* perTokensSfB */ nullptr, scaleC, scaleGateC, /* ptrBias */ nullptr, /* ptrAlpha */ nullptr, /* ptrBeta */ nullptr, /* ptrClampLimit */ nullptr, c, /* outSfC */ nullptr, /* routeMap */ nullptr, /* totalNumPaddedTokens */ nullptr, /* ctaIdxXyToBatchIdx */ nullptr, /* ctaIdxXyToMnLimit */ nullptr, /* numNonExitingCtas */ nullptr, workspace, stream, device, configIndex); } std::string TrtllmGenBatchedGemmRunner::getKernelNameFromConfigIndex(int32_t configIndex) const { auto const bmm = BatchedGemmInterface(); auto const configs = bmm.getBatchedGemmConfigs(); return configs[configIndex].mFunctionName; } std::vector TrtllmGenBatchedGemmRunner::getValidConfigIndices(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, int32_t validM, int32_t validN, int32_t validK) const { auto const bmm = BatchedGemmInterface(); auto const configs = bmm.getBatchedGemmConfigs(); int32_t multiProcessorCount = tensorrt_llm::common::getMultiProcessorCount(); BatchedGemmData gemmData; // Sanitize optional valid dimensions validM = validM <= 0 ? m : validM; validN = validN <= 0 ? n : validN; validK = validK <= 0 ? k : validK; // Dims gemmData.mProblemDimensions.mNumBatches = numBatches; gemmData.mProblemDimensions.mNumTokens = numTokens; gemmData.mProblemDimensions.mBatchM = !mOptions.transposeMmaOutput; gemmData.mProblemDimensions.mBatchedM = mOptions.transposeMmaOutput ? std::vector{} : batchedTokens; gemmData.mProblemDimensions.mBatchedN = mOptions.transposeMmaOutput ? batchedTokens : std::vector{}; gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m; gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n; gemmData.mProblemDimensions.mK = k; gemmData.mProblemDimensions.mValidM = mOptions.transposeMmaOutput ? validN : validM; gemmData.mProblemDimensions.mValidN = mOptions.transposeMmaOutput ? validM : validN; gemmData.mProblemDimensions.mValidK = validK; gemmData.mProblemDimensions.mRank = 0; gemmData.mProblemDimensions.mWorldSize = 1; gemmData.mProblemDimensions.mMaxNumCtasInTokenDim = maxNumCtasInBatchDim; auto cmpFunc = [&configs, &gemmData, &bmm, &multiProcessorCount](int64_t idx0, int64_t idx1) { auto const& optionsA = configs[idx0].mOptions; auto const& optionsB = configs[idx1].mOptions; int32_t sizeK = gemmData.mProblemDimensions.mK; // Tier 0: K < tileK, prefer higher efficiency. if (optionsA.mTileK != optionsB.mTileK) { // Both waste computation, prefer higher efficiency. if (sizeK <= optionsA.mTileK && sizeK <= optionsB.mTileK) { double eff_a = (double) sizeK / optionsA.mTileK; double eff_b = (double) sizeK / optionsB.mTileK; return eff_a > eff_b; } // If either can be utilized, sort by tileK. else { return optionsA.mTileK > optionsB.mTileK; } } // Tier 1: When tileK is the same, prefer unroll loop 2x for mma. if (optionsA.mUseUnrollLoop2xForMma != optionsB.mUseUnrollLoop2xForMma) { return optionsA.mUseUnrollLoop2xForMma; } // Tier 2+: When previous comparators are the same, prefer higher tileM. if (optionsA.mTileM != optionsB.mTileM) { return optionsA.mTileM > optionsB.mTileM; } // Tier 2+: When previous comparators are the same, prefer higher tileN. if (optionsA.mTileN != optionsB.mTileN) { return optionsA.mTileN > optionsB.mTileN; } // Tier 2+: When previous comparators are the same, and when the number of estimated CTAs is on the larger side, // prefer persistent tile scheduler. if (optionsA.mTileScheduler != optionsB.mTileScheduler) { auto options = bmm.getOptionsFromConfigAndData(configs[idx0], gemmData); auto numCtas = bmm.getNumCtas(options, gemmData.mProblemDimensions.mMaxNumCtasInTokenDim); if (numCtas > multiProcessorCount) { return optionsA.mTileScheduler == batchedGemm::gemm::TileScheduler::Persistent; } else { return optionsB.mTileScheduler == batchedGemm::gemm::TileScheduler::Persistent; } } return false; }; // Sort configs by options. std::vector sortedIndices = mPassingConfigIndices; std::sort(sortedIndices.begin(), sortedIndices.end(), cmpFunc); // Special rules for corner cases, if applicable. std::vector prioritizedIndices = prioritizePredefinedConfigs(m, n, k, sortedIndices, configs); // Filter out invalid configs. std::vector validConfigIndices; for (auto const& configIndex : prioritizedIndices) { auto const& config = configs[configIndex]; auto isValidConfig = bmm.isValidConfig(config, gemmData); if (isValidConfig) { validConfigIndices.push_back(configIndex); } } TLLM_CHECK_WITH_INFO(!validConfigIndices.empty(), "No valid config found for the given problem shape MNK %d %d %d and effective MNK range %d %d %d", m, n, k, validM, validN, validK); return validConfigIndices; } int64_t TrtllmGenBatchedGemmRunner::getDefaultValidConfigIndex(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, int32_t validM, int32_t validN, int32_t validK) const { auto const validConfigIndices = getValidConfigIndices( m, n, k, batchedTokens, numTokens, numBatches, maxNumCtasInBatchDim, validM, validN, validK); return validConfigIndices[0]; } bool TrtllmGenBatchedGemmRunner::isValidConfigIndex(int32_t configIndex, int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, int32_t validM, int32_t validN, int32_t validK) const { auto const bmm = BatchedGemmInterface(); auto const configs = bmm.getBatchedGemmConfigs(); BatchedGemmData gemmData; // Sanitize optional valid dimensions validM = validM <= 0 ? m : validM; validN = validN <= 0 ? n : validN; validK = validK <= 0 ? k : validK; // Dims gemmData.mProblemDimensions.mNumBatches = numBatches; gemmData.mProblemDimensions.mNumTokens = numTokens; gemmData.mProblemDimensions.mBatchM = !mOptions.transposeMmaOutput; gemmData.mProblemDimensions.mBatchedM = mOptions.transposeMmaOutput ? std::vector{} : batchedTokens; gemmData.mProblemDimensions.mBatchedN = mOptions.transposeMmaOutput ? batchedTokens : std::vector{}; gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m; gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n; gemmData.mProblemDimensions.mK = k; gemmData.mProblemDimensions.mValidM = mOptions.transposeMmaOutput ? validN : validM; gemmData.mProblemDimensions.mValidN = mOptions.transposeMmaOutput ? validM : validN; gemmData.mProblemDimensions.mValidK = validK; gemmData.mProblemDimensions.mRank = 0; gemmData.mProblemDimensions.mWorldSize = 1; gemmData.mProblemDimensions.mMaxNumCtasInTokenDim = maxNumCtasInBatchDim; auto const& config = configs[configIndex]; return bmm.isValidConfig(config, gemmData); } } // namespace kernels TRTLLM_NAMESPACE_END