mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
feat(scaffolding): make sampling_params only setable by controller Signed-off-by: Zhenhuan Chen <chenzhh3671@gmail.com>
92 lines
2.8 KiB
Python
92 lines
2.8 KiB
Python
from pathlib import Path
|
|
|
|
# isort: off
|
|
from utils.llm_data import llm_models_root
|
|
# isort: on
|
|
|
|
import asyncio
|
|
import os
|
|
import sys
|
|
|
|
import pytest
|
|
from llmapi.apps.openai_server import RemoteOpenAIServer
|
|
|
|
from tensorrt_llm.scaffolding import (GenerationTask, TaskStatus, TRTLLMWorker,
|
|
TRTOpenaiWorker)
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from llmapi.test_llm import get_model_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def deepseek_distill_7b_path() -> Path:
|
|
model_dir = llm_models_root() / "DeepSeek-R1/DeepSeek-R1-Distill-Qwen-7B"
|
|
return model_dir
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def default_prompt():
|
|
prompt = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?\r\n\r\n"
|
|
return prompt
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def model_name():
|
|
return "DeepSeek-R1/DeepSeek-R1-Distill-Qwen-7B"
|
|
|
|
|
|
@pytest.fixture(scope="module", params=['pytorch'])
|
|
def backend(request):
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(scope="module", params=[2], ids=["enable_processpool"])
|
|
def num_postprocess_workers(request):
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server(model_name: str, backend: str, num_postprocess_workers: int):
|
|
model_path = get_model_path(model_name)
|
|
|
|
args = ["--backend", f"{backend}"]
|
|
args.extend(["--num_postprocess_workers", f"{num_postprocess_workers}"])
|
|
args.extend(["--kv_cache_free_gpu_memory_fraction", "0.5"])
|
|
remote_server = RemoteOpenAIServer(model_path, args)
|
|
return remote_server
|
|
|
|
|
|
def create_trtoai_worker(model_name, async_client):
|
|
return TRTOpenaiWorker(
|
|
async_client=async_client,
|
|
model=model_name,
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio(loop_scope="module")
|
|
def test_trtoai_worker_generation(default_prompt, model_name, server):
|
|
worker = create_trtoai_worker(model_name, server.get_async_client())
|
|
task = GenerationTask.create_from_prompt(default_prompt)
|
|
status = asyncio.run(worker.run_task(task))
|
|
try:
|
|
assert status == TaskStatus.SUCCESS, "Generation Task is not successful with TRTOpenaiWorker"
|
|
except AssertionError as e:
|
|
worker.shutdown()
|
|
server.__exit__(None, None, None)
|
|
raise e
|
|
|
|
|
|
def create_trtllm_worker(model_path):
|
|
return TRTLLMWorker.init_with_new_llm(str(model_path), backend="pytorch")
|
|
|
|
|
|
def test_trtllm_worker_generation(default_prompt, deepseek_distill_7b_path):
|
|
worker = create_trtllm_worker(deepseek_distill_7b_path)
|
|
task = GenerationTask.create_from_prompt(default_prompt)
|
|
status = asyncio.run(worker.run_task(task))
|
|
try:
|
|
assert status == TaskStatus.SUCCESS, "Generation Task is not successful with TRTLLMWorker"
|
|
except AssertionError as e:
|
|
worker.shutdown()
|
|
raise e
|