TensorRT-LLMs/tests/unittest/trt/functional/test_nonzero.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

80 lines
2.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
# isort: off
import torch
# isort: on
from parameterized import parameterized
from polygraphy.backend.trt import (CreateConfig, EngineFromNetwork, Profile,
TrtRunner)
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
((4, ), ),
((4, 2), ),
((0, 4, 2), ),
])
def test_nonzero(self, x_shape):
# test data
# x_shape = (4, 4)
x_shape_last = list(x_shape[1:])
x_data = torch.randint(2, size=x_shape, dtype=torch.int32).bool()
print(x_data)
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=[-1] + x_shape_last,
dtype=tensorrt_llm.torch_dtype_to_trt(x_data.dtype))
output = tensorrt_llm.functional.nonzero(x).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
# needs profile for dynamic shape
profiles = Profile().add('x', [0] + x_shape_last, [2] + x_shape_last,
[32] + x_shape_last)
build_engine = EngineFromNetwork(
(builder.trt_builder, net.trt_network),
config=CreateConfig(profiles=[profiles]))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
})
print(outputs['output'].transpose())
# pytorch run
# print(x_data.nonzero())
ref = x_data.nonzero().transpose(0, 1)
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
return