TensorRT-LLMs/tests/unittest/trt/functional/test_outer.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

60 lines
1.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from utils.util import create_session, run_session
import tensorrt_llm
from tensorrt_llm import Tensor
class TestOuter(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_outer(self):
# test data
dtype = 'float32'
x_data = torch.arange(1., 5.).cuda()
y_data = torch.arange(1., 4.).cuda()
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=y_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.outer(x, y)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'x': x_data, 'y': y_data}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.outer(x_data, y_data)
# compare diff
torch.testing.assert_close(ref, outputs['output'])